ICoSCIS Project

Scientific Computing in Interdisciplinary Sciences

1. Complex Systems
2. GRID computing

Panos Argyrakis
University of Thessaloniki
GREECE

Interdisciplinary Sciences:

- Physics, Chemistry, Biology
- Mathematics, Computer Science
- Engineering
- Medical and Health Sciences
- Economics?
- Sociology?
- Linguistics

Textbooks in Econophysics

J.P Boucheudand M. Potters - Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management, Cambridge University Press (2003)

J. Voit - The Statistical Mechanics of Financial Markets,Springer (2005)
R.N. Mantegna and HE Stanley - An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press (2000)

Internet and WWW explosive growth

$$
\begin{aligned}
& 1970-10 \text { hosts } \\
& 1990-1.75^{*} 10^{5} \text { hosts } \\
& \text { Now }-1.2^{*} 10^{9} \text { hosts }
\end{aligned}
$$

1990 - 1 web site
$1996-10^{5}$ web sites
Now -10^{9} web sites

Internet

- Today >> 10^{9} Connections
- What is its structure?
- How are new connections made?

Answer:

- We have to see how it all started

Network \rightarrow Graph

- We have two (2) kinds of entities:
- Nodes
- Connections, synapses, edges

- could be a simple graph or a complex one (Complex systems)

The model of Erdös-Rényi (1960)

Connections with probability p
$\mathrm{p}=1 / 6$

Pál Erdös

(1913-1996)

$$
\mathrm{N}=10
$$

$$
\langle\mathrm{k}\rangle \sim 1.5
$$

$\mathrm{k}=$ number of connections that a node has $P(k)=$ distribution of k

Structure of the Internet:
All new nodes are randomly connected.
No higher Government to dictate the connectivity in the Internet.
THUS:
One would expect a Normal distribution (Gauss/Poisson).

$\mathrm{k}=$ number of connections that a node has
$P(k)=$ distribution of k

INTERNET BACKBONE

Nodes: computers, routers
Links: physical lines

$$
P(k) \sim k^{-\gamma}
$$

$\mathrm{k}=$ number of connections that a node has $P(k)=$ distribution of k

(Faloutsos, Faloutsos and Faloutsos, 1997)

Network Backbone at University of Thessaloniki

World Wide Web

Nodes: WWW documents

Links: URL links

800 million documents (S. Lawrence, 1999)


```
ROBOT: collects all
URL's found in a document and follows them recursively
```

R. Albert, H. Jeong, A-L Barabasi, Nature, 401130 (1999)

WWW

It has a power-law

Diameter of WWW:
$<d>=0.35+2.06 \log N$
$A v N=8 \times 10^{8} \rightarrow<d>=18.59$

Communication networks

The Earth is developing an electronic nervous system, a network with diverse nodes and links are

-computers	
-routers	-phone lines -TV cables
-satellites	-EM waves

Communication networks: Many non-identical components with diverse connections between them.

What does it mean?

Exponential Network

Scale-free Network

Society

Nodes: individuals
Links: social relationship (family/work/friendship/etc.)
S. Milgram (1967)

John Guare

How many (n) connections are needed so that an individual is connected with any other person in the world?
$\mathrm{N}=6$ billion people
Result: n^{\sim} 6
Conclusion: We live in a small world
Six Degrees of Separation!!

Facebook helps you connect and share with the people in your life.

Sign Up
It's free and always will be.

Create a Page for a celebrity, band or business.

Facebook:

-700,000,000 registered users
-50,000,000 active users
-5,000,000 generate 95% of traffic

Questions to answer:
-How many people communicate with how many?
-How many connections that each person have?
-How frequently does he communicate with others?
-How long time does the communication last?

SCIENCE COAUTHORSHIP

Nodes: scientist (authors)
 Links: write paper together

(Newman, 2000, H. Jeong et al 2001)

SCIENCE CITATION INDEX

11000 most cited Physhcists，1981－dume 1997

Alutiener mames		Mrasfature	Comatary		มave citess	anc：	1和丰沊 －atices	
	\ldots		Eisha，ma		168	138	23.335	I
Gussiage	Act	Fcsis cti		Semal				2
Cataz	能迷		USm， Hz	sube 1 2 ．	－			3
Butiote	¢	es 0an	YSA， CH	Supar ${ }^{\text {a }}$		1		＊
13caraer	退	Es．pape	Cumertaitey	Sceme	1	，		5
1majas	3	－citati	Sur imaterat		1	7		6
［13 ${ }^{\text {sk }}$	$\cdots \square 1$	S：C1tat1		Serelt M I				\％
Cumberma	M	Wlats Feramck	Cembtatey		S			8
Nancrpherlcos	Pr		EStm，Fx			c		9
Hexesel	A．	ucssecty	USm，CA					10
1．ces＊	W月			PR				11
Suramk ${ }^{\text {a }}$	\cdots			$1+141$	44．	14		12
 			$8)$	Scerice $/ \sqrt{/ \sqrt{1}}$	11	11		12
Sumelect 	173	RL papers	8)	scotic $/ \sqrt{ } / \sqrt{ }$	111	1		L－4
＂ Y ＂：fasatika：				Scrich $/ \sqrt{ } / \sqrt{ } 1$		${ }_{1}$		15
	＋			Supre 1234	－．	－	212	17
Schmaen 100								18
Cheeras				Oplices（e）	69	$16 ?$	9656	19
MEat ker					20	n97\％	96968	Es
Minters				Sernamotalagaty fry	63	14	96.32	21
Chu 8 \％					c	113	9.45 .3	22
सoctron λ				Supracontaco（－3）	${ }_{2}{ }^{\text {ch }}$	53	9311	23
Conent				Solici Srabe（l＇）	33	2s－1	931 E	23
Meetaz \mathbf{R}_{4}						$16 \pm$	9З以	25
Wrasze 10					2	162	9179	26
Sharemer				Sapreacotedy	\％	2e8p	Etal	27
					8	19 y	4859	\％
$\psi+1 \mathrm{mder}$					67	120	品68t6	29
Uclrisia 1	．	100			26	361	8529	30
			1000		72	115	8.512	31
Mixply		x			11．1	76	5436	32
	E． 3		USSA，MA			2ests	\＄5\％\％	54
3 cosertert	133	Arporte（sit．）			$\text { (S. Redner, } 1998 \text {) }$			
funks	bex	Argonne（NE，j	USA． 16					

[^0]
ACTOR CONNECTIVITIES

Nodes: actors Links: IMDh Internet Movie Database cast jointly

$\mathrm{N}=212,250$ actors
$\langle\mathrm{k}\rangle=28.78$
$\mathrm{P}(\mathrm{k}) \sim \mathrm{k}^{-\gamma} \mathrm{P} \quad \mathrm{S}$

Sex-web

Nodes: people (Females; Males)
Links: sexual relationships

4781 Swedes; 18-74; 59% response rate.

Liljeros et al. Nature 2001

Yeast protein network

Nodes: proteins

Links: physical interactions (binding)

Finding Proteins That Interact

One technique, called the yeast two-
hybrid system, relies on bringing into close
proximity two halves (a and b) of a protein
that activates a gene that causes a yeast
cell to turn blue. It is used to determine
which of a pool of unknown "prey" pro-
teins binds to a known "bait" protein.

1 Insert DNA encoding a known "bait" protein linked to DNA for half (a) of the activator protein

P. Uetz, et al. Nature 403, 623-7 (2000).

Real-world phenomena to study

- Crowd behavior: strategies to evacuate people and stop panic.
- Search strategies: efficient networks for searching objects and people.
- Traffic flow: optimization of collective flow.
- Dynamics of collaboration: human relationship networks such as collaboration, opinion propagation and email networks.
- Spread of epidemics: efficient immunization strategies.
- Bullying: networks of harassment in peer groups
- Patterns in economics and finance: dynamic patterns in other disciplines, such as Economics and Finance, and Environmental networks.

SIR

(R Recovered (or Removed)

What is Econophysics?

"Econophysics is the application of typical methods from physics to the study of the financial markets, seen as a complex system."
H. E. Stanley, Boston University, Boltzmann Medal 2004:
*For his influential contribution to several areas of statistical physics....

However . it is nothing really that newl
E. Majorana, Scientia, Vol. 36, 58 (1942)
"On the value of the statisticallaws in physics and in social sciences.

Physica A, Vol. 285, p. 1 (2000)
Exotic statistical physics with applications to biology, medicine and economics.

Time series

Stock price changes

Financial Time Series

If not Gaussian then what?

Small to intermediate $\delta \mathrm{p}$:
Pareto-Levy distribution with a power-law tail $1+\mu \approx 2.4$ (Mandelbrot, 1963).

- It is a stationary pdf for the sum of random variables with diverging second moment:
合 $\delta p^{-(1+\mu)} \delta p^{2} d \delta p=\infty$
- non-random walk exponent in p vs. t $<|p(t)-p(0)|>{ }^{1 / \mu}$

From Mantegna,Stanley, Nature (1995)

Ludwig Boltzmann (1844-1906)
Boltzmann-Gibbs probability distribution $P(\varepsilon)^{\sim} \exp (\varepsilon / T)$, where ε is energy, and $T=\langle\varepsilon>$ is temperature.

Vilfredo Pareto (1848-1923)
Pareto probability distribution $P(r) \sim r^{(\alpha+1)}$ of income r.

An analogy between the distributions of energy ε and money m or income r

uuick experıment: tree aata trom

 www.nyse.com/marketinfo/nysestatisti cs.html

In a gaussian world the probability of the
October 1987 crash would be 10^{-135} !

Athens Stock Exchange: Alpha Bank

$Z(t)=\log P(t)-\log P(t-\Delta t)$

- Mantegna - Stanley

$$
\begin{aligned}
& Z_{s}=Z /\left[(\Delta t)^{1 / \alpha}\right], \\
& P_{s}\left[Z_{s}\right]=(\Delta t)^{1 / \alpha} P_{L, \alpha}[Z] \\
& a=1.43
\end{aligned}
$$

Rare events:

-Why do Financial Stock Markets crash?
-What are the bubbles?
-Can we predict such events?
-Can we find some pre-cursor activity?

What is the Grid?

If you look at our world today you will see a lot of computers, up to several million!

What is the Grid?

...but also data storage elements and instruments such as meteorological sensors and satellites.

What is the Grid?

Most of them are connected to the Internet, a large-scale computer network.

What is the Grid?

Thanks to the World Wide Web, a service built on top of the Internet, these computers can share information.

Server

World

What is the Grid?

Thanks to the World Wide Web, a service built on top of the Internet, these computers can share information.

What is the Grid?

Thanks to the World Wide Web, a service built on top of the Internet, these computers can share information.

World

What is the Grid?

 The Grid goes one step further!

What is the Grid?

... but also computing power and resources like disk storage, databases and software applications.

(

What is the Grid?

While one computer may take days to complete a complex calculation ...

What is the Grid?

... the Grid will make

 available hundreds of collaborative computers...
\square

What is the Grid?

... to get the same result

 faster and more efficiently!
What is the Grid?

Once connected to the Grid, the user will see it as one large computer system, providing almost infinite computer power!

computing nowadays is like.......
water, electricity, telephone, television

Cloud computing

Tools to attack the computational problem (the HPC case...)

- Cnorial hardware

nVidia GPGPU

SGI Altix FPGA
Blade servers

IBM Cell
(LANL Roadrunner)

European Grid/nfrastructure

HellasGrid Overview

Grid Infrastructure @ A.U.Th.

ICoSCIS Project

- Build new GRID node in Blagoevgrad
- Connect Blagoevgrad node to the Bulgarian National Grid structure
- Enhance/improve the Thessaloniki node
- Bring the 2 communities together
- Provide all the necessary training

[^0]: ＊citation tokel ？ney be skewed becalse of mutbple awthors with the same name

