Find my presentations here:

http://db.tt/9PdUuOrq

Introduction to Networks

European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

European Territorial Cooperation Programme Greece-Bulgaria 2007-2013

A small review to complexity

A small review to complexity

A small review to complexity

A small review to complexity

Modeling with Random Numbers

CPU

Random number Generator

,
 Random number

Independent variable of the problem.

...But WHY modeling?

A simulation is a procedure that takes place virtually in a machine.

Even because the timeframe / space of the experiment is to small or large!

NOT in human observable size!

Even because the experiment has not a human observable parameters.

Percolation

in real life

Forest fire

Oil in a porous material

Percolation

in real life

Spread of a disease or
information

Percolation

in the computer!
Plot of the probability of one site to belong to the spanning cluster

A small review to complexity

No blueprint or master-mind
Self-organization
Evolution
Adaptation
Emergence

A small review to complexity

Behind each complex system there is a network, that defines the interactions between the component.

What is a network ?

Let's play a game!

Connect all the dots with 4 continuous straight lines.

Let's play a game!

Connect all the dots with 4 continuous straight lines.

Let's play a game!

Connect all the dots with 4 continuous straight lines.

Let's play a game!

Connect all the dots with 4 continuous straight lines.

Let's play a game!

Connect all the dots with 4 continuous straight lines.

What is a network?

Networks

Social

Networks

Networks

technological

Networks

technological

Networks

Humans have only about three times as many genes as the fly

Networks

Biological

Humans have only about three times as many genes as the fly

Where it All Began - Back to 1735

Can one walk

 across theseven bridges and never cross

the same bridge twice?

Where it All Began - Back to 1735

Can one walk across the seven bridges and never cross the same bridge twice?

Where it All Began - Back to 1735

Can one walk across the seven bridges and never cross the same bridge twice?

Abstracting the problem into a graph allows to develop a universal language

Networks

Abstracting the problem into a graph allows to develop a universal language

Networks

Networks

Networks \& randomness

We extract a random number

This random number represents a single random node

Networks \& randomness

We extract a random number AGAIN

This random number represents the second single random node

Networks \& randomness

Networks \& randomness

Networks \& randomness

3

Networks \& randomness

How can we generate a network?

Vanilla Ice Cream \neq cold + yellow + soft + sweet + vanilla

We need a method to combine all the ingredients

Example: Road Accidents

The accident is a whole

Example: Road Accidents

The accident is a whole

the individual parts may not cause an accident

The coffee break is not far ..

Let's see what a network means

- Try to combine the different ingredients of a set in a way that you want.

The Erdős-Rényi Random Graph

- Start with N nodes
- Connect each pair with probability p
- Obtain Llinks

$$
L_{\text {max }}=\mathbb{N}(\mathbb{N} \sim \mathbb{I}) / / 2
$$

$$
\begin{aligned}
& N=10 \\
& p=1 / 6 \\
& L=8
\end{aligned}
$$

The Erdős-Rényi Random Graph

- Start with N nodes
- Connect each pair with probability p
- Obtain Llinks

$$
\begin{aligned}
& \mathrm{S}=8 / 45=0.177 \\
& \mathrm{~L}_{\max }=\mathbb{N}(\mathbb{N}-\mathbb{I}) / / 2 \\
& \mathrm{~S} \equiv \mathrm{~L} / \mathrm{L}_{\max }
\end{aligned}
$$

$\mathrm{N} \equiv 10$
$p=1 / 6$
L = 8

The Erdős-Rényi Random Graph

Density vs. Sparseness -

How many links are present vs. how
many could there potentially be

$$
1 / 6=0.166
$$

$$
\begin{aligned}
& S=8 / 45=0.177 \\
& L_{\text {max }}=\mathbb{N}(\mathbb{N}-\mathbb{1}) / / 2 \\
& S \equiv L / L_{\max }
\end{aligned}
$$

$$
\begin{aligned}
& N=10 \\
& p=1 / 6 \\
& L=8
\end{aligned}
$$

The Erdős-Rényi Random Graph

Degree -
The number of links
Of @ ఇ○@(
$\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 L}{N}$

$$
\left.\langle k\rangle_{E R}=p(N-1) \quad \Longrightarrow \quad H \&\right\rangle=1.5
$$

The Erdős-Rényi Random Graph

Degree Distulbution The probabolity for a『andom node fo have degree ko

The Erdős-Rényi Random Graph

Degree Distulbution The probability for a『andom node fo have degree ko

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 L}{N}
$$

$$
\langle k\rangle_{E R}=p(N-1)
$$

Clustering

Clustering Coefficient -

Characterizes the
tendency to form triangles

Types of Graphs

Undirected

- Protein inferaction networks
- Collaboranion networks
- Actor co-stardom networks
- Internef

Types of Graphs

Directed

- Merabolic
- Cifation networks
- World Wide Welb

$A_{i j}=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Types of Graphs

Biparfile

- Collaborafion networks
- Actor co-sfardom network
- Disease network

Types of Graphs

Weighted

- Mefabolic nełworks
- Collaboranion networks
- Actor co-sfardom networks
- Social nelworks

A paradigm

What kind of networks are the following ones:

facebook

Facebook helps you connect and share with the people in your life.

Facebook

Family

Twitter

internet

Name	Markee Price	$\begin{aligned} & \text { OVJUN } \\ & \text { Vallued } \end{aligned}$	$\begin{aligned} & \mathrm{VE} \\ & \text { Rating } \end{aligned}$	Last 12-M Return(\%	Forecast 1-Y Return(\%)	$\begin{gathered} \text { PIF } \\ \text { Ratios } \end{gathered}$	Industy	$\begin{aligned} & \text { Value } \\ & \text { Level } \end{aligned}$	Pivol	$\xrightarrow{\text { Risky }}$ Level
BROCADE COMm SY	${ }_{95} 5.53$	15.3	3	0.5	4.4	10.8	wewrors	5230		6.08 A
digi inti inc	9975	74	3	11.5	15	36.3	Nemoens	9.08 w		1237 S
Emulex Corp	96.32	43.6	3	15.5	4.5	9.6	wewors	576	6.490	. 66 W
Emagin Corp	63.27	45.1	3	7.4	0.0	44.6		3.15 w		3.85 M
Extreme netwrks	63.61	13.2	3	19.9	1.1	20.1	werone	3.18 M	3.68 w	5.06 A
intermec inc	${ }^{97} 98$	16.7	3	8.6	0.3	72.6	Espreara teurme	54 M		. 08 w
Infinera CORP	95.79	26.9	3	15.4	3.0	NA	nemoors	5.01 w		6.87 S
keytronic	99.87	21.3	3	5.6	2.5	7.5	Peremer	498	9.94	0.37 M
LOGITECH INTL	97.52	31.7	3	3.2	2.8	14.0	eepripat equmer	6.12 w		9.87 M
mitek systems	83.45	106	3	58.4	0.1	NA	emean becosurion	3.01 A	3.24 A	5.57 S
novatel wireles	81.31	18.5	2	56.5	9.6	NA	spremen teumerer	1.09 W		3.678
PLANAR SYSTEMS	81.19	49.5	2	40.2	9.1	NA	pegatran equemer	1.05 S	1.18 w	$1.78{ }^{0}$
QLOGIC CORP	98.83	49.1	3	41.3	4.1	11.4	werwors	7.57 A	8.60 w	12.020
SIIRRA WIRELESS	${ }_{87} 95$	26.0	3	14.9	3.1	12.0		753 A	8.140	9.17 M
TRANSACT TECH	87.43	9.6	3	12.2	1.1	16.2		-674S	7.53 M	. 772 w

stocks

Transportation

The metric of paths

Network Distance -

the minimum number of edges
between a pair of nodes

$$
D_{i j}=3
$$

The metric of paths

Network Distance -

the minimum number of edges
between a pair of nodes

$$
D_{i j}=4
$$

The metric of paths

Network Distance -

the minimum number of edges
between a pair of nodes

$$
D_{j i}=\infty
$$

$D_{i j}=4$

Giant Component

Component -
A group of nodes that can be reached by finite paths from one another

Giant Component

Radius -
Average path length
Diameter -

HOMEWORK 1 : Search for ..
"Milgram's Experiment Six Degrees of Separation"

Maximum path length

A Paradigm

A Paradigm

A Paradigm

The exploding volume of networks

The secret behind the small world effect Looking at the network volume

The exploding volume of networks

The secret behind the small world effect Looking at the network volume

The exploding volume of networks

First Neighborhood

$\times 3$

The exploding volume of networks

Second Neighborhood

The exploding volume of networks

Third Neighborhood

TREES ?

Random Graphs are NOT trees.

Some of your neighbor's neighbors are also your own

The Erdős-Rényi Random Graph

Poisson

Clustering

Small world radius scales logarithmically with volume

Exercise 1

Random Network

Create a network with N nodes.
Use $\mathrm{N}=10000$ and $\mathrm{N}=100000$ for a Random distribution of connections. Use the rule that for every possible connection between two (2) nodes there is a probability of $1 / 6$.

Find the k of every node, where k is its number of connections. Make the distribution of $\mathrm{P}(\mathrm{k})$ and plot $\mathrm{P}(\mathrm{k})$ vs k on a graph.
The data will be the average of 100 runs.

The Erdős-Rényi Model can be used in Real Networks?

The Erdős-Rényi Model and Real Networks

It is the reference model - a standard candle

It will help us calculate many quantities, that can then be compared to the real data, understanding to what degree is a particular property the result of some random process.

Which is the type of Real Networks in Nature?

Scale-free Networks

RANDOMNESS

Scale-free Networks

Where should we place the social network?

Scale-free Networks

Could a network which is so strongly locally structured be at the same time a small world?

Scale-free Networks

Could a network which is so strongly locally structured be at the same time a small world?

Yes. You don't need more than a few random links.

Map of Scientific Collaborations

The Internet-based experiment

- 60000 start nodes
- 18 targets
- 384 completed chains

- Average path length between 5 to 7 .

How it All Started

Nodes: WWW documents Links: URL links

Over 3 billion documents
ROBOT: collects all URL's found in a document and follows them recursively

Scale-free network

Scale-free network

.. and the majority of the nodes have very few connections

What it Means to Be a Power-Law

What it Means to Be a Power-Law

Power Law Distributions

GENOME
protein-
gene
interactions
PROTEOME
protein-
protein
interactions
METABOLISM
Bio-
chemical
reactions

Internet Movie Database - IMDB

Sexual Partnership

Nodes: people (Females; Males) Links: sexual relationships

How to .. Power-Law

An easy way to have a power-law distribution

1. Generate a random number \boldsymbol{x} between [0,1]
2. Give to constant γ a standard value
3. Let $\boldsymbol{y}_{\text {max }}=\mathbf{N}$ (if you have a Scale-free network of N nodes)
4. Let $y_{\text {min }}=1$ (because everyone must be connected to someone!)
5. Use the following equation:

$$
y=\left[\left(y_{\text {max }}^{1-\gamma}-y_{\text {min }}^{1-\gamma}\right) x+y_{\text {min }}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}
$$

6. Finally \boldsymbol{y} is the degree of each node of your network
7. Make the distribution of $p(k)$ in dependence of k
8. Congratulations! You have a Power-Law distribution!

Power-Law in a computer

Node	degree (k)
1	2
2	1
3	1
4	3
5	2
6	1
7	2
9	6
10	1

$P(k)$	degree (k)
4	1
3	2
1	3
0	4
0	5
1	7
0	8
0	9

Power-Law in a computer

Exercise 2

Scale-Free Network

Create a network with N nodes.
Use $\mathrm{N}=10000$ and $\mathrm{N}=100000$ for a Power law distribution which results in a scale-free network.
Use the distribution $\mathrm{P}(\mathrm{k}) \sim \mathrm{k}^{-\gamma}$, where γ is constant.
Here use k=2, 2.5, 3 .
Use the values $\mathrm{k}_{\text {min }}=1$ and $\mathrm{k}_{\max }=\mathrm{N}$.
On a graph (with logarithmic axes) create the distributions $\mathrm{P}(\mathrm{k})$ vs k for the three values of γ.
The data will be the average of 100 runs. .

$$
y=\left[\left(y_{\max }^{1-\gamma}-y_{\min }^{1-\gamma}\right) x+y_{\min }^{1-\gamma}\right]^{\frac{1}{1-\gamma}}
$$

BA Model -
 Networks are Not Static

Real networks continuously expand by the addition of new nodes

WWW

Citations

Internet

BA model - Growth

Networks continuously expand by the addition of new nodes

Add a new node with m links

Preferential attachment

The probability that a node connects to a node with k links is proportional to k.

BA Growth / preferential attachment

Growth

Preferential Attachment

Richer nodes accumulate links more rapidly

Degree Heterogeneity

Power Law

As the power-law describes systems of rather different ages and sizes, it is expected that a correct model should provide a time-independent degree distribution. Indeed, asymptotically the degree distribution of the BA model is independent of time (and of the system size N) - the network reaches a stationary scale-free state.

Universality of Networks

Power law degree distribution

High clustering and community structure

> Despite the diversity in scale, purpose and functionality, the topological characteristics of networks exhibit a high degree of universality

Small world topology

Universality of Networks

Universality - The observation that there are properties for a large class of systems that are independent of the dynamical details of the system

- Diverse phenomena explained by the same fundamental principles
- Unified set of analytical and empirical tools
- Limiting the number of relevant observables

Some simulation techniques

```
nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
/* Make sure we always allocate at least one indirect block pointer */
nblocks = nblocks ? : 1;
group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
if (!group_info)
return NULL;
group_info-> ngroups = gidsetsize;
group_info->nblocks = nblocks;
atomic_set(&group_info->usage, 1);
if (gidsetsize <= NGROUPS_SMALL)
group_info-> blocks[0] = group_info->small_block;
else {
for (i = 0; i < nblocks; i++) {
gid_t *b;
    b = (void *)__ get_free_page(GFP_USER);
if (!b)
    goto out_undo_partial_alloc;
        group_info->blocks[i] = b;
```


Some simulation techniques

Step 1:
We generate a random number x between [1,8], representing the node of the network which is to be connected.

Some simulation techniques

Step 2:
We generate then a random number x2 between [1,8], representing the node of the network which is to be connected with the previous one.

Some simulation techniques

Step 3:
We consider the two nodes as connected (we put the link).

Some simulation techniques

Step 4:
We repeat the previous 3 steps as much as we want..

Some simulation techniques

Simulating a network

Some simulation techniques

Simulating a network all we need is a two-dimensional array

nodes	1	2	3	4	5	6	7	8
1	0	1	0	0	0	0	0	1
2	1	0	0	0	1	0	0	0
3	0	0	0	1	1	0	0	0
4	0	0	1	0	1	0	1	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	0	1	0	0	0	1
8	1	0	0	0	0	0	1	0

Some simulation techniques

OR you can use another two-dimensional array

connections	1	2	3	4	5	6	7	8
11	2	8	0	0	0	0	0	0
2	1	5	0	0	0	0	0	0
3	4	5	0	0	0	0	0	0
4	3	5	7	0	0	0	0	0
5	2	3	4	6	0	0	0	0
(6)	5	0	0	0	0	0	0	0
7	4	8	0	0	0	0	0	0
8	1	7	0	0	0	0	0	0

nodes

for more information...

- visit:
- http://icoscis.physics.auth.gr
- http://kelifos.physics.auth.gr/COURSES/courses.html
- or e-mail:
- icoscis@physics.auth.gr

for more information...

- Or search for .. :

1. D.P. Landau and K. Binder, "A Guide to Monte Carlo Simulations in Statistical Physics", Cambridge University Press, 2000
2. Yaneer Bar-Yan, "Dynamics of complex systems", Addison - Wesley, 1997
3. S. Solomon and E. Shir, "Complexity; a science at 30 ", europhysics news, March/April 2003
4. G.H.Weiss, "Aspects and Applications of the Random Walk", North Holland 1994
5. Dietrich Stauffer: "Introduction to percolation theory", Taylor \& Francis, 1985
6. Reuven Cohen \& Shlomo Havlin, "Complex Networks: Structure, Robustne and Function", Cambridge University Press, 2010

Find my presentations here:

http://db.tt/9PdUuOrq

Thank you jor your attention!!

