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What do we know up to know? 

 Networks have a complex structure and 

their topology is highly irregular in most 

cases. 

 Real world networks can be simulated. 

 Real world networks are subject to 

attacks and/or errors. 

 



Reminder: Small world networks 

 Real networks have a small world 

character.  

 This means that despite their often large 

size, there is a relatively short path 

between any two nodes.  

 The distance of two nodes is the number 

of edges along the shortest path 

connecting them. 



Reminder: Small world networks 

 “Six degrees of separation” – Milgram’s 

experiment  

• The typical distance between any two 

nodes in small world networks scales as 

the logarithm of the number of nodes  

random graphs 

 Any Hollywood actor is on average 

connected to any other through just 3 

connections (co-stars)! 



Reminder: Small world networks 

Kevin Bacon in 1994 commented 

that he had worked with everybody 

in Hollywood or someone who's 

worked with them. On April 7, 

1994, a lengthy newsgroup thread 

headed "Kevin Bacon is the 

Center of the Universe" appeared. 



Reminder: Small world networks 

Six Degrees of Kevin Bacon game (based on 

the "six degrees of separation" concept) 

That idea became a game:  

 movie buffs try to find the shortest path 

 between any actor and veteran Hollywood 

 character actor Kevin Bacon.  

It assumes that any actor involved in the 

Hollywood film industry can be linked 

through film roles to Kevin Bacon by 6 steps.  



Reminder: Small world networks 

The game requires a group of players to try 

to connect any such individual to Kevin 

Bacon as quickly as possible and in as few 

links as possible.  

In 2007, Bacon started a charitable 

organization named SixDegrees.org. 

This organization helped charitable 

organizations do research on cancer.  

Therefore, Kevin Bacon “cured cancer”. 



Reminder: Watts – Strogatz model 

• Watts and Strogatz is a one-parameter 

model that interpolates between an 

ordered finite dimensional lattice and a 

random graph.  



Reminder: Watts – Strogatz model 



Reminder: Watts – Strogatz model 

• The algorithm behind the model is the 

following: 

• Start with order: Start with a ring lattice 

with N nodes in which every node is 

connected to its first K neighbors (K/2 on 

either side). In order to have a sparse but 

connected network at all times, consider 

N>>K >>ln(N)>>1. 



Reminder: Watts – Strogatz model 

• Randomize: Randomly rewire each edge 

with probability p such that no self-

connections and duplicate edges exist.  

• We introduce pNK/2 long-range edges 

which connect nodes that otherwise 

would be part of different neighborhoods.  

• By varying p we monitor the transition 

between order (p=0) and randomness 

(p=1). 



Reminder: Newman Watts variant 

• Edges are added between randomly 

chosen pairs of sites.  

• No edges are removed.  

• It is easier to analyze than the original 

Watts-Strogatz model because no 

isolated clusters are formed.  

• For sufficiently small p and large N it is 

equivalent to the original model. 



Reminder: Barabasi Albert model 

• The origin of the power-law degree 

distribution observed in networks was 

first addressed by Barabasi and Albert 

(1999).  

• They argued that the scale-free nature of 

real networks is rooted in two generic 

mechanisms shared by many real 

networks. 



Reminder: Barabasi Albert model 

• Growth: Starting with a small number 

(m0) of nodes, add a new node with m 

(<=m0) edges to different existing nodes. 

• Preferential attachment: When choosing 

the nodes a new one connects to, 

assume that the probability Π to connect 

to node i depends on the degree ki of 

node i, such that 



Reminder: Barabasi Albert model 

   Scale free modular 

      Watts – Strogatz model 



What do we observe ourselves? 

 Networks are not static. 

R&D in Germany 

World cup movie 1 & 2 

Network topologies and evolution 

They can change topology over time (cell 

phone, wireless device networks).  

Kuramoto oscillators 

http://youtu.be/9ASZphInxQE
http://www.youtube.com/v/H-ZUQD0lP9E&hl=en_GB&fs=1
http://www.youtube.com/v/gVnTVVbUiFo&hl=en_GB&fs=1
https://www.youtube.com/watch?v=XVdQgVWpb2g
https://www.youtube.com/watch?v=jRruEqGeXTI


What do we observe ourselves? 

 They can grow over time (friendship, 

World Wide Web, sexual contact 

networks).  

Evolution of “Green” companies relations, 

the so-called “GORT” cloud  

 They can die-out over time (friendship, 

World Wide Web). 

Sociopatterns 1 & 2 

https://www.youtube.com/watch?v=zQA9R2MKKvg
https://www.youtube.com/watch?v=zQA9R2MKKvg
https://www.youtube.com/watch?v=zQA9R2MKKvg
https://www.youtube.com/watch?v=zQA9R2MKKvg
https://www.youtube.com/watch?v=ObtVS547lu4
https://www.youtube.com/watch?v=RvFALBMmcz4


What do we observe ourselves? 

 These changes can be: 

a) really fast  wireless communication 

networks  

 snapshots at one point in time are 

meaningless in another,  

b) really slow  power grid 

 such networks are easily considered as 

static. 



So, networks change, evolve! 

 We need to study the dynamics and the 

evolution of networks that change over 

time. 

 The Barabasi-Albert (BA) model is a 

minimal model that captures the 

mechanisms responsible for the power-

law degree distribution. Not very good for 

the dynamics and future of a network!  



BA vs real networks 

 Compared to real networks, the BA 

model has evident limitations: it predicts 

a power-law degree distribution with a 

fixed exponent, while the exponents 

measured for real networks vary 

between 1 and 3. 



Real networks characteristics 

<k> average degree, κ  cutoff, γout  out degree, γin  in degree,  

lreal  average path lengths of real networks,  

lrand  average path lengths from random-graph theory,  

lpow  average path lengths from power-law degree distribution 



Network evolution questions 

 Discrepancies between model and real 

networks led to increased interest in 

addressing questions on network 

evolution:  

1.How can we change the scaling 

exponents?  

2.Are there universality classes similar to 

those seen in critical phenomena, 

characterized by unique exponents? 



Network evolution questions 

3.How do microscopic processes, present 

 in real networks, influence network 

 topology?  

4.Are there quantities (besides the degree 

 distribution) that could help in classifying 

 networks? 



Network evolution questions 

Results signal the emergence of a self-

consistent theory of evolving networks, 

offering unprecedented insights into 

network evolution and topology. 

 



Preferential attachment 

A central ingredient of all models aiming to 

generate scale-free networks is preferential 

attachment. 

Thus, we assume that the likelihood of 

receiving new edges increases with the 

node’s degree.  

The BA model assumes that the probability 

Π(k) that a node attaches to node i is 

proportional to the degree k of node i. 



Preferential attachment 

This involves two hypotheses:  

 first, that the probability Π(k) depends on 

 k, in contrast to random graphs in which 

 Π(k)=p,  

 and second, that the functional form of 

 Π(k) is linear in k.  



Preferential attachment 

The precise form of Π(k) is an important 

question, as studies have shown that the 

degree distribution depends strongly on 

Π(k).  

To review these developments we start by 

discussing the empirical results on the 

functional form of Π(k), followed by the 

theoretical work predicting the effect of 

Π(k) on the network topology. 



Measuring Π(k) for real networks 

•The functional form of Π(k) can be 

determined for networks for which we know 

the time at which each node joined the 

network.  

•Such data are available for the co-

authorship network of researchers, the 

citation network of articles, the actor 

collaboration network, and the Internet at 

the domain level.  



Measuring Π(k) for real networks 

•Consider the state of the network at a 

given time, and record the number of ‘‘old’’ 

nodes present in the network and their 

degrees.  

•Measure the increase in the degree of the 

‘‘old’’ nodes over a time interval ΔT, much 

shorter than the age of the network.  



Measuring Π(k) for real networks 

•Plotting the relative increase Δki/Δk as a 

function of the earlier degree ki for every 

node gives the Π(k) function.  
 

Δk  number of edges added in time ΔT.  

We can reduce fluctuations (noise) in data 

by plotting the cumulative distribution 



Cumulative preferential attachment 

Cumulative preferential 

attachment for: 

(a) citation network;  

(b) Internet;  

(c) neuroscience scientific 

collaboration network;  

(d) actor collaboration 

network.  

Dashed line corresponds to 

linear preferential 

attachment. 

Solid line to no preferential 

attachment. 



• The obtained Π(k) supports the existence 

of preferential attachment. Furthermore, it 

appears that in each case Π(k) follows a 

power law, i.e., 

Cumulative preferential attachment 



• In some cases, such as the Internet, the 
citation network, Medline, and the Los 
Alamos archive we have α≈1, i.e., Π(k) 
depends linearly on k as assumed in the 
BA model.  

• For other networks the dependence is 
sublinear, with α=0.8±0.1 for the 
neuroscience co-authorship and the actor 
collaboration networks. 

Cumulative preferential attachment 



Nonlinear probability Π(k) 

• We have two distinct cases: 

1. Sublinear case (α<1) 

The degree distribution can be expressed by 

a series and the result is a stretch 

exponential in which a new term arises 

whenever α decreases below 1/l, where l 

is an arbitrary positive integer. 



Nonlinear probability Π(k) 

2.Sublinear case (α>1) 

There is no analytic solution. 

• If α>2, A “winner takes all” phenomenon 

arises. Almost all nodes have a single edge 

that connects them to the entire network. 

• If 1.5<α<2, the number of nodes with two 

edges grows as t2-α, while the number of 

nodes with more than two edges is finite. 

The other edges belong to the gel node. 



Nonlinear preferential attachment 

• Analytical calculations demonstrate that the 

scale-free nature is destroyed for nonlinear 

preferential attachment. 

• It remains scale free only when the 

preferential attachment is asymptotically 

linear. 

• In this case the rate equation leads to 

P(k)~k-γ with γ=1+μ/α∞. 

• It can be tuned to any value from 2 to ∞. 



Initial attractiveness 

• A general feature of Π(k) in real networks is 

that Π(0)≠0, i.e., there is a nonzero 

probability that a new node attaches to an 

isolated node.  

• Thus, in general Π(k) has the form 

Π(k)=A+kα,  

 where A is the initial attractiveness of the 

node i. 



Initial attractiveness 

• if A=0, a node that has k=0 can never 

increase its connectivity.  

• However, in real networks every node has 

a finite chance to be ‘‘discovered’’ and 

linked to, even if it has no edges to start 

with.  

 Thus, A describes the likelihood that an 

isolated node will be discovered, such as a 

new article’s being cited the first time. 



Initial attractiveness 

Analytically solved model:  

• at every time step a new node is added, 
followed by the addition of m directed 
edges pointing from any node in the 
network to preferentially chosen nodes.  

• The probability that a node will receive an 
incoming edge is proportional to the sum 
of an initial attractiveness and the number 
of incoming edges, i.e., Π(kin)=A+kin.  



Initial attractiveness 

• Calculations indicate that the degree 

distribution follows Π(k)~k-γ with γ=2+A/m.  

• Consequently, the scale-free nature of the 

degree distribution remains even with 

initial attractiveness; only the degree 

exponent changes.  

 



Growth 

• In the BA model the number of nodes and 

edges increases linearly in time. 

Consequently the average degree (<k>) of 

the network is constant. 

• What happens on the network dynamics 

and its topology when we have a nonlinear 

growth rate? 



Nonlinear growth rate results 

• The ability of networks to follow different 
growth patterns is supported by several 
recent measurements.  

1. Internet <k> in November 1997 was 3.42. 

 It increased to 3.96 by December of 1998. 
(In 13 months!!!) 

2. Similarly, the World Wide Web has 
increased its <k> from 7.22 to 7.86 in just 
five months in 1999.  



Nonlinear growth rate results 

3. <k> of scientific coauthorship has 

continuously increased over an eight-year 

period.  

4. Comparison of metabolic networks of 

organisms of different sizes indicates that 

the <k> of the substrates increases 

approximately linearly with the number of 

substrates involved in the metabolism. 



Nonlinear growth rate results 

• The increase of the <k> indicates that in 

many real systems the number of edges 

increases faster than the number of nodes, 

supporting the presence of a phenomenon 

called accelerated growth. 



Nonlinear growth rate results 

• Opposite effects can also happen. <k> can 

be reduced with a growing network. 

• A Facebook sample of 5.8 Million users on 

2007 had <k>=5.73.  

 In 2011 Facebook said that the 723 Million 

users (it had then) have <k>=4.74. 

• Also, 99.91% of Facebook users were 

interconnected, forming a large connected 

component.  



Example 

• LinkedIn (as a service) operates based 

exactly on this idea.  

• It tells you how many steps you are away 

from a person you wish to communicate 

with.  

http://www.linkedin.com/


Example 

• i.e. Last week I was connected to people 

from AUBG only (SWU teachers do not 

have a Linkedin account). One of them is 

connected to a Tanya Tancheva, so if you 

know her, you are my 3rd degree 

connection! If you know someone who 

knows her you are my 4th degree 

connection! 



Example 

• This week I may connect to Ivan Trenchev. 

• The site also encourages you to pass 

messages to people in your network via 

the people in your 1st-degree connections 

list, who in turn pass it to their 1st-degree 

connections. 

• If you become connected to them then the 

networks <k> is reduced. 



Analytical results 

• Since I see you are not into analytical 

results, I will skip those…. 



Analytical results 

Just kidding! 

 

Now comes the 
interesting (who am I 

kidding?) part! 



Analytical results 

• An analytic study of the effect of 

accelerated growth on the degree 

distribution, generalized the directed model 

with asymptotically linear preferential 

attachment.  

• At every step a new node is added to the 

network, receiving n incoming edges from 

random nodes in the system. 



Analytical results 

Additionally, c0t
θ new edges are distributed, 

each directed from a random node to one 

with high in degree, with asymptotically 

linear preferential attachment P(kin)~A+kin.  

Results showed accelerated growth, 

controlled by the exponent θ. The scale-free 

nature of the degree distribution was not 

affected (only different degree exponent) 



Analytical results 

While this model is based on a directed 

network, other models use an undirected 

model motivated by measurements on the 

evolution of the co-authorship network.  

In the undirected model new nodes connect 

to the system with a constant rate to b 

existing nodes with preferential attachment 



Analytical results 

Additionally, at every time step a linearly 

increasing number of edges (constituting a 

fraction α of the nodes that are present in 

the network) are distributed between the 

nodes. The probability that an edge is added 

between nodes i and j being 



Analytical results 

N(t) is the number of nodes in the system 

and the summation goes over all nonequal 

values of s and l.  

As a result of these two processes the <k> 

increases linearly in time, following 

<k>=αt+2b, in line with real co-author 

network data.  



Analytical results 

Continuum theory predicts that the time-

dependent degree distribution displays a 

crossover at a critical degree, 

 

 

for k=kc, P(k) follows a power law with 

exponent γ=1.5 and for k»kc the exponent is 

γ=3.  



Analytical results 

This explains the fast-decaying tail of the 

degree distributions measured, and 

indicates that as time increases the scaling 

behavior with γ=1.5 becomes increasingly 

visible. 

 



Growth constraints 

• For many real networks the nodes have  

a. a finite lifetime. For example, in social 

 networks – people-nodes, or friendships-

 connections die out 

b. a finite edge capacity. Internet routers or 

 nodes in the electrical power grid.  

• The extend to which such constraints 

 affect the degree distribution has been 

 studied. 



Aging and cost 

• While several networks show deviations 

from the power-law behavior, they are far 

from being random networks.  

• For example, the degree distribution of the  

 electric power grid of southern California 

 neural network of the worm C. elegans  

 is more consistent with a single-scale 

exponential distribution. 



Electric 
power 
grid of 
southern 
California 

 

Neural 
network 
of the 
worm C. 
elegans  



Aging and cost 

• Other networks (extended actor 

collaboration network) have a degree 

distribution where power-law scaling is 

followed by exponential cutoff for large k.  

• Constraints limit the addition of new edges.  



Aging and cost 

For example 

• the actors have a finite active period during 

 which they collect new edges (retirement) 

• the electrical power grid or other neural 

 networks, have constraints driven by 

 economic, physical, or evolutionary 

 reasons (too expensive to build new lines – 

 “evolutionary” expensive to do the same). 



Aging 

• In order to explain these deviations from a 

pure power law aging and cost or capacity 

constraints must be incorporated.  

• Suggested models follow growth and 

preferential attachment, but when a node 

reaches a certain age (aging) they do not 

allow new edges to connect.  



Aging 



Capacity cost 

• Similar models as before with one main 

difference in the constraints produce 

similar results. 

• Instead of aging they take into account 

capacity costs. If a node has more than a 

critical number of edges they do not allow 

new edges to connect.  



Capacity cost 



Aging and cost results 

In both cases numerical simulations indicate 

that while for small k the degree distribution 

still follows a power law, for large k an 

exponential cutoff develops. 



Local events 

• The BA model has only one mechanism for 

network growth: addition of new nodes 

connecting to existing nodes.  

• In real systems, a series of microscopic 

events shape the network evolution, i.e. 

addition or rewiring of new edges or 

removal of nodes or edges.  



Example time – wake up! 

In simple terms the Facebook analogue is: 

• Your connections increase when you 
connect to existing nodes you had not 
connected before (by simply finding them 
as being friends of a friend that you 
happen to also know).  

• They also reduce if you remove a link to 
someone or if they decide to stop using 
Facebook (as if this happens…). 



Local events 

• Several models exist to investigate the 

effect of selected processes on the scale-

free nature of the degree distribution, 

offering a more realistic description of 

various real networks.  

• Any local change in network topology can 

be obtained through a combination of four 

elementary processes: addition or removal 

of a node or an edge.  



Local events 

• But in reality these events come jointly.  

• For example, the rewiring of an edge is a 

combination of an edge removal and the 

addition of another edge originating from 

one (common with before) node to another 

one.  



Internal edges and rewiring 

• Several models exist that incorporate new 

edges between existing nodes and rewire 

current ones. 

• Starting with m0 isolated nodes, at each 

time step we perform one of the following 

three operations: 



i. With probability p we add m(m≤m0) new 

edges.  

 One end of a new edge is selected 

randomly, the other with probability given 

by 

 

 

Internal edges and rewiring 



Internal edges and rewiring 

ii. With probability q we rewire m edges.  

 We randomly select a node i and remove 

an edge lij connected to it, replacing it with 

a new edge lij’ that connects i with node j’ 

chosen with probability Π(k’j) given by the 

previous equation. 



Internal edges and rewiring 

iii.With probability 1-p-q we add a new node. 

 The new node has m new edges that are 

connected to nodes i already present in 

the system with probability Π(ki). 



• The growth rate of the degree of a node i is 

given by 

 

 

• The first term on the right-hand side 

corresponds to random selection of node i 

as a starting point of a new edge (with 

probability p) or as end point from which an 

edge is disconnected (with probability q).  

Internal edges and rewiring 



• The growth rate of the degree of a node i is 

given by 

 

 

• The second term corresponds to the 

selection of node i as an end point of an 

edge with the preferential attachment 

present in all three of the possible 

processes. 

Internal edges and rewiring 



Internal edges and rewiring 

• The degree distribution has the 

generalized power-law form (for q>qmax 

too many edges rewired) 

 

 

• For q>qmax numerical simulations indicate 

that P(k) approaches an exponential and 

the above equation is not valid. 



Internal edges and rewiring 

• While a power-law tail is present in any 

point of the scale-free regime, for small k 

the probability saturates at P[κ(p,q,m)] 

(there is a kind of a plateau), a feature 

seen in real networks:  

Movie actor collaboration networks (b) 

Coauthorship network in neuroscience (d) 



The degree distribution 
of several real 
networks:  

(a) Internet at the 
router level.  

(b) movie actor 
collaboration network.  

(c) co-authorship 
network of high-energy 
physicists.  

(d) co-authorship 
network of 
neuroscientists. 



Internal edges and edge removal 

• Let us consider a class of undirected 

models in which new edges are added 

between old sites and existing edges can 

be removed.  

• In the first variant of the model, called a 

developing network, c new edges are 

introduced at every time step.  



Internal edges and edge removal 

• These edges connect two unconnected 

nodes i and j with a probability proportional 

to the product of their degrees [as in slide 

54], an assumption confirmed by empirical 

measurements on the co-authorship 

network.  

• This is explained by the fact that new 

researchers are added as young people 

write their first papers.  



Internal edges and edge removal 

• It is assumed that c can be tuned 
continuously, such that c>0 for a 
developing and c<0 for a decaying 
network.  

• A two term rate of change of the node 
degrees can be calculated. One term 
corresponds to the linear preferential 
attachment and the other to the addition of 
c new edges.  



• The BA model assumes that all nodes 
increase their degree following a power-
law time dependence with the same 
dynamic exponent β=1/2.  

 

 

Thus, the oldest nodes have the highest 
number of edges, since they had the 
longest lifetime to accumulate them.  

Competition in evolving networks 



Competition in evolving networks 

However, numerous examples indicate that 

in real networks a node’s degree and growth 

rate do not depend on age alone.  

• On the WWW some documents acquire a 

 large number of edges in a very short time 

 through good content and/or marketing. 

• Some research papers acquire many more 

 citations than their peers.  



Example case 

Launched as a beta 
version on AprilFools 
Day (1/4/2004). 



Competition in evolving networks 

How can such a phenomenon be explained? 

Two models have tried with relatively good 

success to account for such cases. 

1. Fitness model 

2. Edge inheritance 



Fitness model 

• Real networks have a competitive aspect, 

as each node has an intrinsic ability to 

compete for edges at the expense of other 

nodes.  

• They propose a model in which each node 

is assigned a fitness parameter ηi which 

does not change in time.  



Fitness model 

• Thus, at every time step a new node j with 

a fitness ηj is added to the system, where 

ηj is chosen from a distribution ρ(η).  

• Each new node connects with m edges to 

nodes present in the network  

• The probability of connecting to a node i is 

proportional to the degree and the fitness 

of node i 



Fitness model 

• This generalized preferential attachment 

(compare with slide 14) ensures that even 

a relatively young node with a few edges 

can acquire edges at a high rate if it has a 

high fitness parameter. The rate of change 

of the degree of node i is 



Fitness model 

• Assuming that the time evolution of ki with 
a fitness-dependent dynamic exponent 
β(η), is given by  

 
 

• Thus, nodes with higher fitness increase 
their degree faster than those with lower 
fitness. The fitness model allows for late 
but fit nodes to take a central role in the 
network topology. 



• If there was no fitness then someone 

creating a Facebook account today would 

never be able to surpass the number of 

connections I have (I have a Facebook 

account since Oct 2007).  

• I have practically stopped using Facebook 

for about 3-4 years.  

Facebook example 



• I have very low fitness in the expansion of 

Facebook.  

• I do not even accept new friendship 

requests since I do not login! 

• An active (fit) account from you can make 

more connections  in a very low amount of 

time, although it is newer. 

Facebook example 



• A different mechanism that gives 

individuality to the new nodes exists.  

• It builds on an evolving directed network 

algorithm, and assumes that the degree of 

the new nodes is not constant but depends 

on the state of the network at the time the 

new node is added to the system.  

Edge inheritance 



• Every new node is assumed to be an 

‘‘heir’’ of a randomly chosen old node, and 

it inherits a fraction c of the old node’s 

incoming edges (i.e., a fraction c of the 

nodes that point to the parent node will 

also point to the heir).  

• The parameter c is assumed to be 

distributed with a probability density h(c).  

Edge inheritance 



• The time-dependent degree distribution for 

uniformly distributed c indicates that the 

fraction of nodes with no incoming edges 

increases and tends to 1 asymptotically. 

Edge inheritance 



• When a researcher enters a new scientific 

field, he is usually aware of only a few 

important papers and follows the 

references included therein to find other 

relevant articles.  

• This process is continued recursively both 

ways (up and down), such that a 

manuscript will contain references to 

papers discovered this way.  

Other types of network growth 



• This process is called “walking on a 

network”. 

• It resembles a random walk in a network. 

• The difference is that we can create 

“clones” of our walkers in each node and 

depending on the probability to follow this 

edge we will move to the next node or not. 

Walking on a network 



• A network algorithm that does this can be 

stated in the following way:  

We start with an isolated node.  

At every time step a new node is added 

with a directed edge to a random node.  

We then follow edges starting from this 

node to another with probability p. 

Walking on a network 



This last step is repeated starting from the 

nodes to which connections were 

established, until no new target node is 

found.  

High probability is practically a breadth-

first search algorithm. If p1 this means 

we will practically find ALL nodes in a 

network. 

Low probability means halting quite fast.  

Walking on a network 



• In the special case of p=1 one can see that 

nodes of high degree will be more likely to 

acquire new incoming edges, leading to a 

preferential attachment Π(k)=(1+k)/N.  

• Consequently, the degree distribution 

follows a power law with γ=2.  

Walking on a network 



• If p varies between 0 and 1, simulations 
indicate a phase transition:  

for p<pc≈0.4 the degree distribution decays 
exponentially,  

for p>pc it has a power-law tail with γ very 
close to 2 (the value of p=1).  

• Thus, while the model does not explicitly 
include preferential attachment, the 
mechanism responsible for creation of the 
edges induces one. 

Walking on a network 



• Perhaps the simplest model of a scale-free 

network without explicit preferential 

attachment is the following: at every time 

step a new node connects to both ends of 

a randomly selected edge.  

Attaching to edges 



• Consequently, the probability that a node 

will receive a new edge is directly 

proportional to its degree; in other words, 

this model has exactly the same 

preferential attachment as the BA model.  

• It readily follows that the degree 

distribution has the same asymptotic form 

as the BA model, i.e., P(k)~k-3.  

Attaching to edges 



• In grids and other organized lattices, in any 

dimension larger than one, a percolation 

phase transition occurs. The usual 

percolation model assumes that sites 

(nodes) or bonds (links) in the lattice are 

occupied with some probability (or 

density), p, and unoccupied with probability 

q=1−p.  

Percolation in networks 



• The system is considered percolating if 

there is a path from one side of the lattice 

to the other, passing only through occupied 

links and nodes.  

• When such a path exists, the component 

or cluster of sites that spans the network 

from side to side is called the spanning 

cluster or the infinite cluster.  

Percolation in networks 



• The percolation phase transition occurs at 

some critical density pc that depends on 

the type and dimensionality of the lattice.  

• In networks no notion of side exists. 

However, the ideas of percolation theory 

can still be applied to obtain useful results. 

 

Percolation in networks 



• Main difference with lattices:  

The condition for percolation is no longer 

the spanning property, but rather the 

property of having a component (cluster) 

containing O(N) nodes, where N is the total 

original number of nodes in the network.  

• Such a component, if it exists, is termed 

the giant component.  

Percolation in networks 

https://www.youtube.com/watch?v=mpe44sTSoF8
https://www.youtube.com/watch?v=yjcVdO2F3j4


• The condition of the existence of a giant 

component above the percolation 

threshold and its absence below the 

threshold also applies to lattices, and 

therefore can be considered as more 

general than the spanning property. 

Percolation in networks 



• An interesting property of percolation, 
called universality, is that the behavior at 
the critical point (and near it) depends only 
on the dimensionality, and not on the 
microscopic connection details of the 
lattice.  

• There is a set of “critical exponents” that 
are the same for all d-dimensional lattices, 
even if they are square, triangular, or 
hexagonal, site or bond percolation.  

Percolation in networks 



• A different set will be obtained for another 
dimension of a lattice.  

• Above some critical d (dc=6 for percolation 
in d-dimensional lattices), called upper 
critical dimension, the critical behavior 
remains the same, regardless of d.  

• In high dimensions loops are insignificant, 
allowing us to find the critical exponents for 
high dimensions, by an “infinite-
dimensional” or “mean-field” approach.  

Percolation in networks 



• Percolation on ER networks or on Cayley 

trees has the same critical exponents as 

for lattices above the upper critical 

dimension, since no spatial constraints are 

imposed on these networks.  

• In fact, the heterogeneity of the degrees 

may still affect the critical behavior even 

above the critical dimension.  

Percolation in networks 



• In such cases each node has a typical 

number of neighbors, whereas in SFN the 

variation of node degrees is very large.  

• The results are still “mean field” or “infinite 

dimensional” for the insignificance of the 

loops.  

• However, results that differ from the 

standard mean-field percolation solution 

are obtained. 

Percolation in networks 



• For scale-free networks with γ>4, the 

critical exponents are same as for ER and 

lattices in d≥dc=6. γ is large enough and 

the translational symmetry (approximately) 

exists. 

• For γ<4, however, topology is different, 

thus, critical exponents are different.  

• As a result, scale-free networks are like a 

generalization of ER networks. 

Percolation in networks 


