
# ECONOPHYSICS



## **Theoretical Framework**

### Why Econo(mics)physics?

- Similarities between Physical & Economical Systems
  - Notions & Methods from Physics in Economics
- Complexity & Fractality

#### Efficient Market Hypothesis & Limitations

- Introduction to Efficient Market Hypothesis (EMH)
- Stylized facts
- Limitations of the mainstream approach

### Heterogeneity

- Homogeneity vs. Heterogeneity: Related topics
- Behavioral Finance
- Agent-based modeling

#### **Financial** Risk

- New considerations about Volatility
- Types of risk
- Bubbles and Crashes

## **Quantitative Methods**

### Introduction to Applied Econometrics

- Stationarity
- Descriptive statistics
- (Auto)Correlation

### Measuring Financial Market Inefficiencies

- Volatility study
- GARCH models

### **Heterogeneous structures**

- Fractal analysis
- Trading strategies
- Feedback

## **Quantifying Financial Risk**

- Risk assessment tools
  - Efficient frontier
- Causality & Feedback

## Short description

The courses deal with both traditional and interdisciplinary approaches about the operation of the markets, asset management and investors' behaviour. Special attention is given on alternative interpretations of the financial turbulences and the possibilities of designing efficient economic strategies during fragile periods, by using notions and methods drawn from physical sciences (Physics, Biology, etc) and time series analysis.

**Objective**: bridge the gap between mainstream Economics and the Science of Complexity.

Econophysics

## Short description

**Goal**: Introduction and general overview of Econophysics.

The way that information is disseminated, the behaviour of investors, the nature of speculation and the specific characteristics of shocks hitting the markets raise several questions concerning the efficiency of the mainstream approaches. According to Efficient Market Hypothesis (EMH), the market constantly fulfils investors' expectations and absorbs instantly incoming news. However, as recent experience brought into light, the aforementioned mechanisms induce more complex structures and drive prices away from their fundamentals.

Econophysics

## Short description

The current availability of huge amounts of financial and economic data permit us to study, in detail, the underlying dynamics of the data generating processes.

Several examples and applications will be demonstrated to equip the participants with new tools and techniques that can be widely used on the time series analysis.

Some notions that will be introduced are:

- Statistics & Distributions
- Correlations & Scaling behaviors
- Linear & Nonlinear Modelling
- Causality

Datasets: Standard & Poor's 500 market index, US stock daily prices, Gold, Crude oil, International stock market indices, Commodities.

Econophysics



## Team



#### Catherine Kyrtsou

Associate Professor at Department of Economics - University of Macedonia Associate Researcher at Univ. of Strasbourg (BETA) & Univ. of Paris 10 (EconomiX) & ISC-Paris *Research Interests*: Macrofinance; Financial Instability; Quantitative Methods; Nonlinear Analysis; Energy Markets; Behavioral Finance; Interest rate dynamics; Agent-based Approaches; Economic Complexity and Policy

ICoSCIS position: Scientific Responsible



#### Michalis Maragkakis

**Postdoctoral Researcher** at Department of Physics - Aristotle University of Thessaloniki Research Interests: Complex Science; Applications of networks in complexity science; C programming; Solid State Physics; Computational Physics ICoSCIS position: Senior Researcher and Manager



#### Christina Mikropoulou

**PhD Student** at Department of Economics - University of Macedonia *Research Interests*: Financial Markets; Macroeconomy; Econometrics; Complexity; Behavioral Economics

ICoSCIS position: Junior Researcher

# Why Econo(mics)physics?

Physics

#### Economics

Bertrand Roehner (2005) defines it simply as:

"the investigation of economic problems by physicists" (p.3)

Mantegna and Stanley (2000) in a less general definition highlight that: "The word econophysics describes the present attempts of a number of physicists to model financial and economic systems using paradigms and tools borrowed from theoretical and statistical physics" (p. 355).

The term "econophysics" is widely used (since 90s) to denote <u>a new field of interdisciplinary research</u>, where methodologies and tools from Physics, mainly Statistical Physics and dynamic systems, applied to solve several financial puzzles.

Econophysics - Theoretical Framework

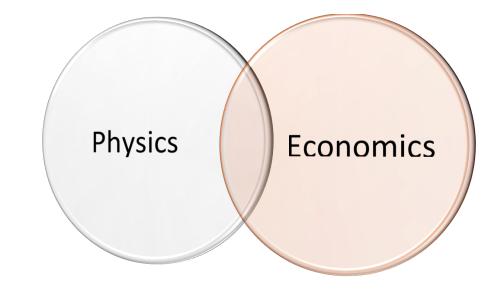
## Why Econo(mics)physics? From Physics to Economics

Physics

Economics

**Economics** is a subject about human behavior related with the management of the resources, finances, income, the production and consumption of goods and services. A social science.

*Physics* tries to construct a picture of the movement of the whole nature. Mechanism is the first topic cared by physicists. A natural science.


#### First steps in Econophysics: the hybrid

- describe and understand the phenomena appeared in Economics using "Physical tools"
- empirical studies of different phenomena to discover some universal or special laws
- o construct models and mechanism

### Why Econo(mics)physics? Names and Keywords

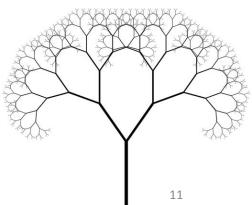
### Names

- ✓ Vilfredo Pareto (1897)
- ✓ Louis Bachelier (1900)
- ✓ Copernicus (1526)
- ✓ Daniel Bernouli (1738)
- ✓ Laplace (1812)
- ✓ Newton (1669 1701)
- ✓ Halley (1963)
- ✓ Mandelbrot (1963)



### Keywords

- ✓ Emerging behaviors
- ✓ Power-law distribution
- ✓ Heterogeneity
- ✓ Self-similarity
- ✓ Phase transitions


## Why Econo(mics)physics? Chaos and Fractality

**Chaos theory** has shown that unpredictable time series can arise from deterministic nonlinear systems.

#### Fractals:

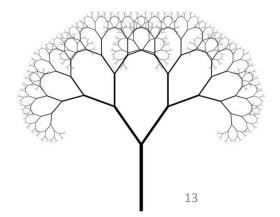
- Geometrical objects generally with non-integer dimension
- Self-similarity (contains infinite copies of itself)
- Structure on all scales (detail persists when zoomed arbitrarily)

Nowadays, studies of chaos, self-organized criticality, cellular automata and neural networks are seriously taken into account as economical and financial tools.



## Why Econo(mics)physics? Complexity in Economics




Economy is a rather populated environment including individuals, firms, countries, goods, and subsystems as financial system, manufacturing, agriculture, service industry.

- All of them interact with each other and produce an outcome.
- A general way to describe such a system is Complex Networks.
- Stock markets share several characteristics with complex systems.

Why Econo(mics)physics? Complexity in Economics



- A system is complex when:
- It is open (can be affected by both internal and external perturbations).
- Have many components that affect with each another (interact nonlinearly in the presence of feedback).
- Its components are nonlinearly connected.
- Exhibit positive feedback dynamics.





## Why Econo(mics)physics?

Comparison between Physical and Economical systems

### **Financial Markets**

- i. power-law distributions,
- ii. correlations,
- iii. scaling,
- iv. unpredictable time series, and
- v. random processes
- Stanley et al. (1999, p.157):

"...in contrast to standard economics, econophysicists begin empirically with **real data** that one can analyze in some detail but **without prior models**..."

Econophysics - Theoretical Framework

**Statistical Physics** 

- i. phase transitions,
- ii. statistical mechanics,
- iii. nonlinear dynamics, and
- iv. disordered systems

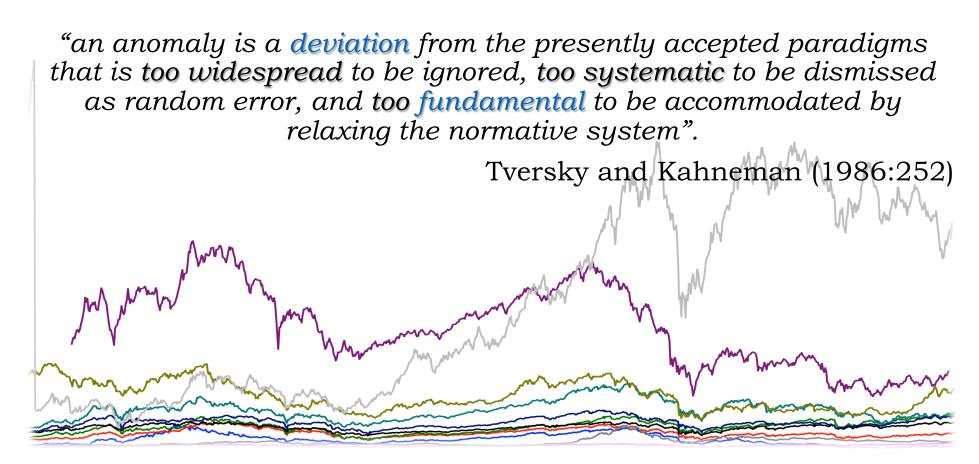


## References

An non-exhaustive list...

Books:

Cuthbertson, K. and Nitzsche, D., 2004, Quantitative Financial Economics: Stocks, bonds and Foreign Exchange, 2nd Ed., UK: John Wiley & Sons.
Mandelbrot, B., and Hudson, R., 2004: The Misbehavior of Markets: A Fractal View of Financial Turbulence, NY: Basic Books.
Mantegna, R., and Stanley, E., 2000: An introduction to Econophysics – Correlations and Complexity in Finance, UK: Cambridge University Press.
Richmond, P., Mimkes, J., and Hutzler, S., 2013: Econophysics & Physical Economics, UK: Oxford.
Savoiu, G., (Editor) 2013: Econophysics – Background and Applications in Economics, Finance, and Sociophysics, UK & USA: Academic Press.
Sinha, S., Chatterjee, A., Chakraborti, A., and Chakrabarti, B., 2011: Econophysics – An Introduction, DE: Wiley-VCH.
Small; M., 2005, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, World Scientific Publishing.


Econophysics - Theoretical Framework

C. Mikropoulou <u>cmikro@uom.gr</u>

## References

An non-exhaustive list...

```
Papers (the list is indicative):
Arthur, B., 1999: Complexity and the Economy, Science, 284(5411), pp. 107-109. doi:10.1126/science.284.5411.107.
Kakarot-Handtke, E., 2013: Toolism! A critique of
Econophysics, MPRA Paper No. 46630, posted 30. Online at
<u>http://mpra.ub.uni-muenchen.de/46630/</u>
Rickles, D., 2008: Econophysics and the complexity of financial markets, in Handbook of the Philosophy of Science – Vol. 10: Philosophy of Complex Systems, North Holand: Elsevier. http://www.sciencedirect.com/science/article/pii/
                                       XM3(350)
Vasconcelos, G., 2004: A guided walk down Wall Street – An
introduction to Econophysics, Brazilian Journal of Physics,
34(3B), pp. 1039-1065.
```

