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What is a system 

A delineated part of the universe which is distinguished from the rest by a real or 

imaginary boundary 

Closed systems 

Only internal interactions 

are taken into account 

Open systems 

In permanent interaction 

with the environment 
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Examples of systems 
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Simple vs Complex systems 

We can predict the movement of the mass by simple 

physical laws 

Consists of many colliding particles 

We can predict macroscopic quantities like 

pressure, but not the actual trajectory of all 

the particles (of the order of NA) 
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So, what is a complex system?  

Many neuronal models have been proposed, but brain functionality cannot be 

inferred directly from the parts.   
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Complex system 

A system formed out of many components whose behavior is emergent, that is the 

behavior of the system cannot simply inferred from the behavior of its components 

Can you predict the behavior of a human, just by knowing the 

functionality of its individual organs? 

Main properties of complex systems 

Interdependent parts 

Emergence, i.e. self-organizing collective behavior difficult to anticipate from the 

knowledge of the parts behavior. 

The emergent behavior does not result from the existence of a central controller.  
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Introduction to complex science – Elementary Statistical Physics 

Take a string composed of 3 characters A, B and C 

Which is the relative frequency of each character in the string ? 

In total 
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More generally, consider a collection of possible outcomes 

In an experiment, we may have the following succession of outcomes 

Assuming that the number of repetitions N is very large, the probability of 

getting an outcome Ak, pk, is  

In the previous example, considering that the same sequence of 

characters is repeated practically infinitely, we have 
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Probabilities using set theory 

S     : Event space 

A,B : Elementary events 

Ø    : empty set 

A OR B = A U B  

A AND B = A ∩ B  
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Problem 

Consider a box which contains 4 black and 5 white balls. A person put his hand inside, without 

being able to observe the containment.  

(a) What is the probability of taking a black ball?  

(b) The same person drags a ball, without putting it back. Then, he repeats the same procedure. What is 

the probability that he gets a black ball? What is the probability that he takes out a white ball, given 

that he has drawn a black ball at his first attempt? 

Solution  

(a) Defining the events: 

              A: “drag a white ball” 

              B: “drag a black ball” 

Nw : number of white balls 

Nb : number of black balls 

N  : total number of balls  
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A and B : mutually exclusive 

For more mutually exclusive events 

If A an event and Ā its complementary, we have 

E.g. : in a coin flip, we have two possible outcomes, “heads” or “tails”. The 

appearance of “heads” excludes “tails” and vise versa. That is A=“heads” 

and Ā=“tails”. Thus if P(A)=p, then P(Ā) = 1- P(A) = 1- p 
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Conditional probability 

The probability of the combination of two events (that is, of the simultaneous 

occurrence of both of them) is equal to the probability of one of them multiplied by the 

probability of the other provided that the first event has occurred. 

EXAMPLE  

Let the urn contain 3 white balls and 4 black balls. Two balls are extracted one after 

the other. Find the probability that both these balls will be white. 

Solution  



Introduction to complex science – Elementary Statistical Physics 

Generally  

Two events A and B are said to be independent if and only if  

This means that 

Example  

What is the probability of having “head” in the 2nd coin toss if we had “tails” in the 1rst 

attempt?  

Each coin toss is independent from its previous ones. So, the probability of having 

“tails” is not affected by the fact that we had “heads” before. Thus: 
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Consider the event space S which 

can be divided into 7 mutually 

exclusive events 
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General multiplication rule 

Example 

Let five balls in the urn be numbered. They are drawn from the urn one after the 

other. Find the probability that the numbers of the balls will appear In the increasing 

order.  

Solution  

Another way is to consider all the possible permutations, which are  

Only one combination of the 120 is the proper, thus P(1,2,3,4,5)=1/n =1/120  
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A rifleman takes four shots at a target. The hit or miss in every shot does not depend on the result 

of the previous shots (that is, the shots are mutually independent). The probability of a hit in each 

shot is 0.3. Find the probability that the rifleman hits the target at least once. 

Problem  

Solution 

We must calculate the following event: 

The above event must contain 15 sub – events, making calculations very tiring 

Instead, let’s try to calculate the complementary event which is stated as 

“all targets are missed” . That is: 

So and 

If an opposite event divides into a smaller number of variants than the event in 

question, we should shift to the opposite event.  
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Modern probability theory 

Random Variable (RV) : a quantity that , as a result of an experiment, it may 

take on various values which are unknown beforehand 

E.g: number of “heads” in a series of coin tosses 

Discrete RV: the possible values are separated by some interval 

e.g. the number of people wearing hats in a room 

Continuous RV: continuously filling a certain interval 

e.g. the height of people living in a city 

Uppercase letters are used for the symbolic representation of a RV while 

lowercase ones are used for the possible values of the RV 
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Distribution function 

Describes the distribution of the probabilities among the values of a random 

variable 

For discrete RV’s: distribution series 

xi x1 x2 …. xn 

pi p1 p2 …. pn 
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PROBLEM 1 
Three independent shots are taken at a target; the probability of a hit each time is 

p = 0.4. Discrete RV X is the number of hits. Construct its distribution series. 

The possible outcomes are: 0,1,2 and 3. Thus, X, takes on that values. 

 

Now, what is the probability of each case? 

 

By letting + the successful shot and – the missed target, we have: 

Solution  

Each shot is independent from the succeeding, thus 
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By the same treatment, we have 

xi 0 1 2 3 

pi 0.216 0.432 0.288 0.064 

The results are summarized in the following table 

Homework 
A sportsman makes several attempts to throw a ball into a basket. At every attempt 

(independently of the others) a success occurs with the probability p = 0.2. As soon as the 

ball gets into the basket the exercise is stopped. Discrete RV X is the number of trials to be 

made. Construct the distribution series for RV X. 
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For continuous RV’s: probability density function 

Probability density of a continuous random variable X is the limit of the ratio of the probability 

of getting RV X into a small interval in the vicinity of point x to the length of this interval as the 

latter tends to zero. 

Consider the height of a man 

• Divide the whole range of values into certain intervals (they may differ) 

• Calculate how many values are put into each interval and divide by the total 

number of experiments made.  

• Calculate the frequency density for each interval; for this purpose divide the 

frequency by the length of the interval 
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Increasing the number of people participating in the experiment 

leads to a smoother histogram 
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How to calculate the probability of an event of the form a ≤ X < b, given f(x)? 
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Basic characteristics of RVs 

Expectation  

discrete RV 

continuous RV 

For PROBLEM 1, find the expectation value of X 

Solution  

Expectation value need not be a 

member of the possible outcomes       

(e.g. S ={0,1,2,3}) 

Given a set of N observed values and for the sake of simplicity can only be discrete and countable, we 

can approximate the expectation by the arithmetic mean for the dataset, that is  

for relatively large N 



Introduction to complex science – Elementary Statistical Physics 

Basic characteristics of RVs 

Variance 

discrete RV 

continuous RV 

It can be shown that 

where 
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For PROBLEM 1, find the variation of X 

Solution  

Given a set of N observed values and for the sake of simplicity can only be discrete and countable, we 

can approximate the variation by averaging the squares of the deviations of the values in the dataset 

from their arithmetic mean, that is  

for relatively large N 

Standard deviation 

Practically, the 99% of the values of a RV X reside inside the range  
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Other properties of expectation and variance 

Additivity  

Given N RVs X1, X2,…, XN it can be shown that for the sum of the RVs  

the expectation value of the new RV X is 

and the variance (given that X1, X2,…, XN are independent RVs ) is 
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Multiply by a constant factor c 

Given a RV X΄= cX, where c constant, it can be shown that the expectation 

value is 

and the variance  

PROBLEM 2 
Let N independent trials be made, in each of which event A occurs with probability p. We 

consider a random variable P*, the frequency of event A in this series of trials. Find 

approximately the range of possible values of RV P* 

Solution  

X: number of occurrences of A in N realizations 

Xi: occurrence of A in a single experiment 

X = X1+X2+…+XN 



Introduction to complex science – Elementary Statistical Physics 

PROBLEM 2 (cont’) 

P*: frequency of occurrence of A in the sequence of N realizations (X/N) 

c=1/N 

Some basic distributions 

• Binomial  

• Uniform  

• Poisson  
It can be shown that for  and 

that the Poisson distribution can be recovered from the 

binomial distribution 
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• Normal (or gaussian)  

Some basic distributions (cont’) 

• Power – law 

Central – limit theorem 

If we add up a large number of independent (or weakly dependent) random variables 

comparable by the order of variances, then the distribution of the sum will be close to 

the normal distribution, irrespective of the distributions of the addends, and the closer 

the greater number of random variables are added up. 

Note that the CLT is applicable only for RVs that exhibit finite 

mean values and variances, i.e. it cannot be applied for a 

power – law distribution 
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To study the properties of a system, it is important to calculate its energy 

Potential Energy  

Kinetic Energy 

Total system’s energy 

(Hamiltonian) 
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For a non – interacting system 

The total energy may be written as 
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Introduction to statistical mechanics 

Statistical mechanics applies probability theory to study the thermodynamic 

behavior of the system composed of a large number of particles 

Basic notions 

microstate: one of the possible configurations of a collection of particles in a given 

environment  

In the above example, we have 19 red shells and 17 grey shells (representing for example “up” and 

“down” spins respectively) in two different possible microstates. 
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Ensemble 

Three basic types of ensembles in statistical mechanics 

The set of all possible realizations that  a system might be 

Microcanonical  

Canonical  

Grand canonical  

describes a completely isolated system, having constant energy, as it does not exchange energy 

or mass with the rest of the universe. N, V, E constant.  

describes a system in thermal equilibrium with its environment. It may only exchange energy in 

the form of heat with the outside. N, V, T constant. 

used in open systems which exchange energy and mass with the outside. V, T, μ constant. 

Each ensemble is connected to a specific partition function 
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Partition function 

• Microcanonical Ensemble 

Number of states at a given energy E 

Measure of the number of states accessible to the system at a given 

temperature 

Encodes the underlying physical structure of the system 

The (statistical) entropy of the system is given by 
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• Canonical Ensemble 

where is the partition function 

The (statistical) entropy of the system is given by 

It follows that 

the well – known relation for the free energy F 
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• Grand Canonical Ensemble 

It can be shown that the partition function is given by the following relation 

where  the number of jth particles in the sth configuration  

In the thermodynamic limit, the macroscopic behavior of the 

system does not depend on the particular ensemble for its 

description. 

So, we can use the ensemble which allows to calculate the 

properties of the macroscopic system more easily 
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What is a phase? 

A state of a system where its properties are the same for every part of it 

The most common phases are: Solid, Liquid and Gas . Phases can also be defined 

according to other aspects, such as different structure (e.g. graphite – diamond phase 

for carbon)  
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What is a phase transition? 

The transition of a system from its current phase to another  

Examples of phase transitions  

A. Liquid  - gas transition (Vaporization) 

Consider a one-component system at temperature T.  

By heat transfer from its surrounding 

environment, the temperature of the system 

increases. 

At T=Tboil, with further heating, the temperature 

of the liquid phase system is held constant. 

At temperature T below Tboil, the system is at its 

liquid phase 

This amount of thermal energy (called latent 

heat) is used to change the phase of the system 

from liquid to gaseous 
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At an intermediate state 

(coexistence of 2 phases) 

Complete transition to the 

gaseous phase 
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B. Ferromagnetic – Paramagnetic transition 

Consider a 2 D lattice. Each site can be occupied by either an up or down 

spin, denoted by grey and red respectively.  

The interactions are only between nearest neighboring spins, with no 

external magnetic field application  

T>TC T<TC 
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At T>TC, we can calculate from the given instant that 

The net magnetization for the system is given by the relation 

where si receives the value +1 for the up direction and -1 for the down one 

However, at T<TC, we have  
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We observe that above a critical temperature TC, the system is composed of random up 

and down spins. On average, the magnetization of the system is 0. By reducing the 

temperature below TC, an ordered phase appears, giving rise to a non-zero net 

magnetization. Thus, we can state that the system undergoes a phase transition from the 

paramagnetic to ferromagnetic phase, as T is reduced below TC.   
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A set of quantities, which uniquely characterize the state of a thermodynamic 

system.  

State variables  

For example, in a fluid system, these variables could be pressure (P), volume (V), 

temperature (T), number of molecules (N).  

These quantities are linked with each other by the famous equations of state. E.g., 

for the monoatomic gases, we have:  

Generally,  

or ,taking into account the interactions between molecules, we have the famous 

van der Waals equation of state for a non-ideal gas 
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Phase diagram 

The changing pattern of a state variable with respect to the others. 

P-V diagram for different values of T 

For convenience, we use 2-d diagrams, i.e. we measure the change of one variable 

with respect to another one, holding a second variable constant. 
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High pressure – low 

volume regime 

 Low pressure – 

high volume regime 

Condensed phase 

Dilute phase 

Region of phase 

coexistence 
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We can construct the T-v phase diagram, by connecting the red dots in the 

P-v diagram 

Above TC, we can move continuously from 

the gaseous phase to liquid phase and 

vice versa 

Typical T- V diagram 
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Typical P- T diagram 

Critical point: the 

transition between liquid 

and gaseous phase is 

continuous 

Triple point: the (P,T) values 

where the 3 different phases 

(solid, liquid, gas) coexist in 

equilibrium 

Coexistence curves  { 
Melting curve (Solid→Liquid) 

Vapor pressure  curve (Liquid→Gas) 

Sublimation  curve (Solid→Gas)  
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Latent heat: the amount of energy necessary 

for the transition from one phase to another 

Consider that we are initially in the liquid phase. 

We move according to the direction of the 

arrow. We transfer heat, keeping the volume 

constant 

While heat is provided to the system, its temperature rises. However, there is a point (the 

well – known boiling point) for which, upon further increase of heat transfer, the 

temperature of the system remains the same. This energy, provided as heat, is the 

abovementioned latent heat. There, we have a phase change (in the figure, the liquid to 

gas transition). The transition is discontinuous. When the substance is completely changed 

to gas, further heating leads to temperature rising. 
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Order of transition 

In thermodynamics, the order of the phase transition is related to the first derivatives 

of the Gibbs free energy, 

Discontinuity 
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Discontinuity Continuity 
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For thermodynamics, a phase transition is classified as follows 

First order 

The first derivatives of the Gibbs free energy are discontinuous. 

Second order 

The first derivatives of the Gibbs free energy are continuous, but the second order 

ones are discontinuous or infinite.  

E.g, the entropy  is continuous while the specific heat 

is discontinuous 
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Critical phenomena 

Order parameter: a property of a system which is non – zero in the “ordered 

phase” and zero in the disordered phase 

For a fluid, such a parameter could be the 

difference between the density of the liquid 

and gaseous phase 

Following the above diagram, it is easy to verify that the difference of densities 

are 0 above a critical temperature TC and non – zero above it 
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Why are we interested to examine the behavior of a system at its critical 

point? 

Understand better the basic phenomena 

The striking similarity of systems near their critical point, yet being different in 

nature 

Understand the “spontaneous” ordering of the system over a practically infinite 

length scale (e.g., how do spins align suddenly at TC?) 

Behavior near criticality 

Lets define a dimensionless parameter t. For example t= (T-TC)/TC 

Generally, a quantity near the critical point can be described by a function of the 

form 
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For t  0 

Critical exponents 

Given a quantity which can be described by a positive and continuous function 

f for small t, it can be shown that the following limit exists 

λ is called the critical exponent of the quantity described by f 

So, a set of indices which describe the behavior near the critical point of the 

various quantities of interest are called critical exponents 
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For example, some relevant quantities of a magnetic system can be described at 

TC by the following relations 

Zero – field magnetization 

Zero – field isothermal 

susceptibility 

Correlation length 

The correlation length is a very important quantity for critical phenomena. It 

defines the length above which the pair - correlation function is negligible. 

Pair – correlation function 

Questions whether or not distant localities tend to act in unison for fluctuations of 

the same direction  
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Near the critical point, the correlation function can be written as 

where η is a critical exponent. 

For  we have and  

We focus to the determination of the critical point exponents for the following 

reasons 

They are measurable while the complete function is not 

There is a large number of relations between the exponents. We have to know only 

two of them in order to calculate the others for a given class 

In the percolation chapter, we will have a closer look at these relations 
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Random Walk  

A stochastic process in which the action at the nth step depends only on the current 

state 

Random variable 
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Random Walk – 1 d case 

Transition probabilities 

Consider each displacement as an independent random variable Xi.  For n=1, we 

have x=x1 (let p=1/2 and start from the origin) 
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For n=2, we have x=x1+x2 

In the same manner 
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From the previous presentation, one can see that at every time step n, the  following 

evolutionary equation holds 

It can be shown that the probability of a 1-d random walker being after n steps at 

position x is given by 

This probability density is attributed to the drunkard’s walk in 1-d dimension 

Generally, the mean square displacement follows asymptotically a relation of the 

form 

with  
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Another quantity which is of great interest for a RW is the mean number of distinctly 

visited sites. Asymptotically, we have 

Moving from discrete to continuous representation –  The Diffusion Approximation 

If the number of steps is very large, we can move from the discrete representation 

of RW to the diffusion process, where space and time are continuous. 

This is not possible for all RW models. 

The diffusion approximation can be used to tackle a broader range of physical 

problems compared to RW models 



Introduction to complex science – Diffusion Theory 

The Diffusion Approximation 

We focus on the 1-d case 

The transition probabilities for moving from a given position to site j are  

The evolutionary equation is given by 

Letting  small, we can write  and  

Thus  
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The evolutionary equation can be written as 

By series expansion around Δx=0 and Δt = 0, we have 

The evolutionary equation takes the form 
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Defining  

and ensuring that 

we have 

For Δx0, p=1/2 and we arrive to the diffusion equation 
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In Latin, "diffundere" means "to spread out".  

Relation to classical diffusion theory 

Removing the divider between high and low concentration region, we see 

that there is a flow from the former to the latter. 

The flow tends to equalize the concentration. 
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Fick’s Laws 

First law 

Second law 
predicts how diffusion causes the 

concentration to change with time  

relates the diffusive flux to the concentration 

under the assumption of steady state  

https://www.youtube.com/watch?v=o6nqYcrItiQ  

A video showing the diffusion of colors in water 

https://www.youtube.com/watch?v=o6nqYcrItiQ
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Some examples of using diffusion theory 

A. Diffusion of a polymer chain in random media 

Dynamic properties of a self-avoiding walk chain, which performs Brownian motion 

between randomly distributed impenetrable fixed obstacles, using Monte Carlo 

simulations 

Molecule consist of beads (black circles) and links. The 

intersection of beads is forbidden.  

Two cases investigated: (1) no intersection and (2) 

“weak” intersection of links 

In both cases, it was proven that the diffusion process is slower than reptation and 

the chain diffusion is controlled by entropic barriers present in the system  

M.Muthukumar and A.Baumgaertner, “Diffusion of a Polymer Chain in Random Media”,Macromolecules, vol.22, 1941-1946, 1989 
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B. Diffusion of information in a complex network 

The effect of structural heterogeinity to the information diffusion is studied, using 

random walk methods. 

By theoretical and numerical treatment, the following conclusions were drawn 

Information does not distribute uniformly in heterogeneous networks 

 

But this imposes congestion problems, because network nodes 

have finite capacities 

The results have important implications in the design of networks such as WWW 

J.D.Noh and H. Rieger, “Random Walks on Complex Networks”, PRL 92 (11), 118701, 2004 
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C .Diffusion of zooplankton  

Examine the spatial distribution of motile zooplankton moving with a variety of 

idealized random motility modes 

The model of “biodiffusion” (i.e. considering that the species diffuse normally) poorly 

describe the natural processes, because it captures only the dispersion and not the 

aggregation of the biological species under this study.  

It must be taken into account the spatially varying environment 

The results showed that the biological motility has been well described by 

the classical diffusion theory, however the behavior of biological agents 

cannot be treated in the same manner as molecules. 

Even for a simple birth – death process, the use of concentration fields is not 

always successful. 

A.D.Visser and H. Thygesen, “Random motility of plankton: diffusive and aggregative contributions”, Journal of Plankton Research, Vol 25(9), 1157,2003 
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D. Molecular crowding and protein diffusion 

Studying the diffusion of tracer proteins in highly – concentrated 

random-coil polymer and globular protein solutions  

This setup is an simple but close to reality imitation of the conditions in cellular 

environments. 

Results 

Protein diffusion deviates from simple diffusion 

Very important for the improvement of drug delivery systems relying on the slow 

release of drugs from polymer matrices 

Subdiffusive process 

D.S. Banks and C. Fradin, “Anomalous Diffusion of Proteins Due to Molecular Crowding”, Biophys. Journal, vol 89, 2960, 2005 
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Percolation-Historical background 

Paul Flory describes by means of statistics the vulcanization of rubber  

[P.J. Flory, J. Am. Chem. Soc. 63, 3083 (1941) 1, 18] 

Similar treatment to the Cayley tree 

Broadbent and Hammersley studied the influence of the random properties 

of a “medium” to the percolation of a “fluid” through it.  

[Broadbent S R and Hammenley J M Proc. Camb. Phil. Soc. 53, 629-41 (1957)] 

Thereafter, many essays using percolation theory have 

been published, while the statistical properties of the 

model were made clear 



What is percolation – Why we study percolation? 

Consider an empty 2-D lattice with L=5  

Total number of sites: 25 

A site can be either occupied (with probability 

p) or empty (with probability 1-p) 

MAIN PROBLEM  

Find the value of the probability p (termed pc) for which the LxL lattice 

is spanned by a collection of nearest neighboring sites, forming a 

continuous path between the two sides of it (vertically, horizontally or 

both) 



What is percolation – Why we study percolation? 

Basic notion 

Cluster : a set of occupied nearest neighboring sites 

Investigates the number and 

structure of these clusters as a 

function of their size 

Percolation is a geometrical 

phase transition  



What is percolation – Why we study percolation? 



What is percolation – Why we study percolation? 

From the previous figures for different values of occupation probability 

p, it is evident that we can divide the procedure in two regimes 

1. p<pc:  only small isolated clusters are formed 

2. p>pc:  a spanning cluster exists, connecting 

the two vertical sides of the lattice 

Phase transition at pc 



What is percolation – Why we study percolation? 

http://demonstrations.wolfram.com/PercolationOnASquareGrid/ 

http://demonstrations.wolfram.com/PercolationOnASquareGrid/


Random percolation variants (I) 

Site percolation 

Each site can be either occupied (with probability p) or empty (with 

probability 1-p) 

Bonds between all neighboring sites are present (for 2d lattice, there are 4 

bonds per site) 



Bond percolation 

Each bond can be either occupied (with probability p) or empty (with 

probability 1-p) 

Sites are considered to be occupied 

Random percolation variants (II) 



Random percolation variants (III) 

Site/Bond percolation 

Each site can be either occupied (with probability p) or empty (with 

probability 1-p) 

Each bond can be either occupied (with probability q) or empty (with 

probability 1-q) 



Other types of percolation 

Other types of percolation 

•Directed 

The percolation process occurs only to a specified direction 

Although having a “percolating path”, we are restricted 

to follow the arrows, thus there is no way reaching from 

bottom to top. 



Other types of percolation 

•Invasion 

Proceeds by letting the displacing fluid grow each time step by occupying 

the accessible site along the front having the smallest random number.  

Initially  After 6 steps 



Other types of percolation 

•Continuum  

We fill the “continuum” with N identical discs, representing a predefined 

concentration of “mass”. The discs are randomly distributed in the medium.  

They form a cluster if they overlap 



Percolation theory (I) 

Here we have s=4, but 3 different realizations 

(depending on t – the number of surrounding 

sites) 

Cluster 1: t = 9 

Cluster 2: t = 8 

Cluster 3: t = 10 

For site percolation 



Typical transition 

Percolation theory (II) 

Mean cluster size 

Percolating cluster 



Percolation theory – Scaling relations (I) 

Near pc 

Using  

we arrive at  

Recalling  

and 

Thus  



Percolation theory – Scaling relations (II) 

Mean cluster mass 

At pc 

Thus  

Generally  

It can be proved [BH91] that 

E.g.  



Percolation theory – Scaling relations (III) 

and following the derivation of [BH91], it can be shown that the correlation 

length ξ is given by 

Correlation length ξ : represents the average cluster radius 

It is given by the relation:  

Near pc, large clusters dominate the sum, thus, taking  

Using  



Percolation theory – Scaling relations (IV)  

Summarizing the critical exponent relations 

It was shown in [S85] that  



Percolation theory – results at infinity (I) 

Cayley tree  

It can be shown that [BH91] 

Using  and 

Also  

with 



Percolation theory – results at infinity (II) 

Using the previous scaling relations we get for the rest of the critical 

exponents 

These exponents are valid for all lattices in d > dc=6 

dimensions 



Percolation theory – general properties of critical exponents 

For two different 2-D configurations, it is proven that 

Also,  for site and bond percolation on a square 2-D lattice, we 

have:  

However, for the critical exponents, we have 

d β γ ν 

2 5/36 43/18 4/3 

3 0.41 1.796 0.88 

≥ 6 1 1 1/2 

Exponents α, σ and τ can be calculated by the previous scaling relations 



Percolation theory – results for the networks (I) 

Using generating functions formalism, the following relations can be 

proven for Scale Free Networks (γ,m) [CH10]  

The critical exponents of Erdos Renyi Networks are the same as 

those of a Cayley tree (or generally, of an infinite dimensional 

lattice) 

Be careful: only valid when there is no degree – degree correlations 

Note that pc = 0 for γ<3 



Percolation theory – results for the networks (II) 

Giant component  

No meaningful interpretation for γ<3 



Percolation theory – general comments 

Universality means that we can investigate 

the simplest of a collection of systems that 

has the same critical properties 

In general, the critical exponents for ordinary random 

percolation depend on the dimensionality (d) and NOT on the 

lattice structure 



Percolation theory – finite size effects 

For a finite system L x L, every quantity which scales like 

near pC, can be written as  

For example [TMKA10] 

Thus, calculating the values of X at pc for different values of L, one 

can numerically estimate the critical exponents 

[more about this in the mid level programming course] 
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