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Uniform random number generator 

Random number: a value drawn from a range [a,b] with a specified probability 

distribution. 

For example, a number x, drawn in the range of [a,b] is said to be uniformly 

distributed if 

How can we produce random numbers using a computer program? 

The simplest case is to use the routine provided by the compiler used. For ANSI 

C, this is: 

#include <cstdlib> 

void srand(unsigned seed); 

int rand(void); 



The ANSI C standard falls in the category of Linear Congruence Method 

Range: [0,m-1] 

The numbers are produced in a deterministic way, starting from an initial value called seed. The 

sequence of these numbers will be the same for every PC if we use the same seed value. However, 

they follow a uniform probability distribution, meaning that the probability of getting a number in the 

range [0,m-1] is 1/m. Below, we present 3 sets of 15 random numbers for different seed values. 



Generally, a good random number generator should have the following 

characteristics: 

• Fast 

• Simple 

• Desired Statistical Properties 
(i.e. no significant correlations) 

• Long period 

The ANSI C standard is simple, fast (only few operations per call) but exhibits 

POOR STATISTICAL PROPERTIES AND SMALL PERIOD 



A simple program for measuring the period for 

ANSI C rand() 

Average period after 10000 runs: 32718 

numbers ≈ RAND_MAX (= 32767) 



Following the presentation of Wong’s book, “Computational Methods in Physics 

and Engineering”, we will implement 3 of the most common tests used: 

• Frequency test 

• Serial correlation test 

• Run up test  

It must be clear that the behavior of RNGs may differ with respect to the statistical 

or empirical test used. The RNG that performs well for the majority of the tests is 

considered to be the best.  

A full set of statistical and other tests concerning the performance of random 

number generators (RNGs) can be found in Donald Knuth’s “The art of computer 

programming”, volume 2, 3rd edition.  



FREQUENCY TEST 

The procedure is the following: 

1. Select the random number generator (RNG). 

2. Set the number of data classes (Nbin). Specify bin range. 

3. Iterate to produce Nrand random numbers. Increase the frequency of the appropriate bin. 

4. Calculate the chi-square. 

5. Output the frequencies and chi – square. 

The chi – square is calculated in the following way: 



A simple program 

performing 

frequency test 



SERIAL CORRELATION TEST 

The procedure is the following: 

1. Select the random number generator (RNG). 

2. Iterate to produce Nrand random numbers (RN). Calculate the correlation coefficient C. 

4. Output the correlation coefficient. 

The serial correlation coefficient is calculated by the following way: 



A simple program 

performing serial 

correlation test 



RUN UP TEST 

The procedure is the following: 

1. Select the random number generator (RNG). 

2. Set the number of possible ascending random number (RN) sequences (m). 

3. Start producing RNs sequences. While the new RN is greater than the previous one, 

increase the length of the sequence by one. Else, store the result to an appropriate 

frequency counter and start a new sequence. 

4. Output the frequency counter and the chi-square. 

The chi – square is in the following way (for uncorrelated sequences as produced 

by the above algorithm: 



Performing run-up test 



The results of the tests for the case of the ANSI C standard are the following:  

Frequency test Serial correlation test 



Guidelines for the implementation of efficient random number generators can be 

found in “Numerical Recipes in C++”, 2nd edition, by Press, Vetterling, 

Teukolsky, Flannery. 

Run up test 

The ANSI C standard is proven to be a poor random number generator (meaning 

that it performs worse than other RNGs in the majority of the tests known so far) 



The selection of an appropriate random number generator depends on the 

problem under study.  

E.g., if anyone wants to have a site on a 2D lattice, he/she must be very careful to 

choose an RNG that has the minimal correlations between successive calls. 

For the rest of the presentation (and just for illustrative purposes) we will use the 

RNG specified by the compiler. You can use any other RNG at the part of the code 

where rand() is being used. 

It is strictly recommended TO TEST THE RNG BEFORE ANY USAGE (or to 

consult any relative documentation) to decide if it is suitable for the problem you 

indent to simulate. 

In the following slides, we will present a simple program which calculates the 

mean value of a sequence of N RNs, uniformly distributed and will try to sketch the 

way of producing RNs with obeying to different distributions.  



Exercise 

Create a program which calculates the average of N random numbers taken from a uniform random 

number distribution. The program must run for Ν=10, 100, 1000, 10000,100000,1000000 random numbers. 

Plot the mean value as a function of N (it’s preferable that the axis of N is logarithmic). Describe your 

conclusions from the results.  



Indicative 

program 



Exercise 

Create an exponential RNG based on the uniform RNG.  

It is easy to show that if x follows a uniform distribution, then we can produce a series of 

numbers following an exponential distribution. 

Because, if x is a uniform random number, it follows that 1-x is of the same distribution, we 

can write instead 

For more information refer to the book: “Numerical recipes in C++” 







Random Walk in 2-D 

One of the most common problems in the Monte Carlo simulations is the RANDOM 

WALK.  

The basic part is the movement: in a 2-D lattice, a particle moves to a neighboring site 

according to a simple if – else process. We restrict the random values produced by the RNG 

in the range [0,1]. We divide this range in four segments of equal width (generally,, in 2d 

segments, with d being the dimension). The RNs are uniformly distributed, so there is no bias 

to the resulting values. Then, depending on the segment into which the RN falls, we choose 

in which direction to move. A possible rule of movement is given below. 



Exercise  

Create a program which simulates the random walk of a particle on a 2D square lattice. The particle 

performs N=1000 steps. Calculate for 10000 random walkers:  

• the average square displacement, <R2> and  

• the average number of distinct sites the random walker has visited 

keeping a record for every 100 steps. 

Plot the results as a function of time steps. 

A random walk may have the following form 



The program 



The program (cont’d) 



Results  





Distribution of <R> in 1-D 







Trapping  

Create a program which constructs a a two (2) dimensional lattice of size 400x400. In this lattice, put at random positions a 

number of trap molecules, which will have concentration c. Put 1 particle in a random position on the lattice and let it perform a 

random walk. In this walk you will not place a time restriction, namely you will not declare a specific number of steps. The walk will 

stop when the particle falls on a trap. The time needed for this to happen is the trapping time. Perform 10000 runs, save the 

trapping times and make the distribution of these times for c=0.02 and 0.2. From this distribution and for c=0.2 calculate the 

survival probability Φ(c,n) and compare it with the Rosenstock approximation. Describe your conclusions. Beware of boundary 

conditions. When the particle reaches the borders of the lattice it shouldn’t be allowed to escape from it but to remain in the 

lattice, either by returning on it former position or by being placed in the opposite site of the lattice. 









Survival probability 

It can be proven that the probability of a particle to survive from trapping is given for 

2D by the relation:  



Network growth 

The investigation of real world systems led Barabasi and Albert[1] to propose a 

mechanism for the evolution of networks, based on 2 main features: 

1. Growth: Starting with a small number of nodes (m0), at every time step, we add 

a new node with m(≤m0) edges that link the new node to m different nodes 

already present in the system. 

2. Preferential attachment: When choosing the nodes to which the new node 

connects, we assume that the probability П that a new node will be connected 

to node i depends on the degree ki of node i, such that: 

[1] Barabasi and Albert, “Emergence of Scaling in Random Networks”, Science, vol 286, 1999 







Results 





Diffusion – Limited Aggregation (DLA) 

DLA is a simple model which was initially used to describe the aggregation process 

of solid particles by Sander and Witten[1]. 

[1] T.A.Witten, L.M.Sander, “Diffusion – Limited Aggregation, a Kinetic Critical Phenomenon”, PRL vol 47, 

no 19, 1981 

The procedure is the following:  

1. Initially, we position a particle at the origin of the lattice. 

2. A second particle is introduced at some random site, a large distance from the 

origin (generally from the aggregate), which performs random walk. 

3. If the particle becomes a nearest neighbor of the aggregate, it becomes a part of 

it and the walk stops. Else, if it goes at the borders of the lattice (or far from the 

aggregate) , it disappears. 

4. A new particle is introduced, repeating steps 2 and 3. 





Making a simple implementation of the algorithm, for a 201 x 201 square lattice, we 

get the following result: 




