European Territorial Cooperation Progamme

Mid level programming
20-21 April 2013

European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE

Uniform random number generator

Random number: a value drawn from a range $[\mathrm{a}, \mathrm{b}]$ with a specified probability distribution.
For example, a number x , drawn in the range of $[\mathrm{a}, \mathrm{b}]$ is said to be uniformly distributed if

$$
p(x)=\left\{\begin{array}{c}
1 /(b-a), \quad a \leqslant x \leqslant b \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

How can we produce random numbers using a computer program?
The simplest case is to use the routine provided by the compiler used. For ANSI C , this is:
\#include <cstdlib>
void srand(unsigned seed);
int rand(void);

The ANSI C standard falls in the category of Linear Congruence Method

$$
\begin{gathered}
I_{j+1}=\left(a I_{j}+c\right) \bmod m \\
I, a, c, m \text { integers }
\end{gathered}
$$

Range: [0,m-1]

The numbers are produced in a deterministic way, starting from an initial value called seed. The sequence of these numbers will be the same for every PC if we use the same seed value. However, they follow a uniform probability distribution, meaning that the probability of getting a number in the range $[0, \mathrm{~m}-1]$ is $1 / \mathrm{m}$. Below, we present 3 sets of 15 random numbers for different seed values.

seed $=5698$	seed $=5699$	seed $=516 \square$
0.509232	0.509323	0.509445
0.457747	0.78576	0.113773
0.931181	0.476333	0.021485
0.811365	0.545701	0.280068
0.997436	0.312204	0.626972
0.275216	0.395032	0.514878
0.486099	0.581103	0.676077
0.563921	0.474593	0.385235
0.169225	0.673147	0.177007
0.426374	0.238746	0.6511185
0.167577	0.163091	0.158574
0.710288	0.711631	0.712973
0.370464	0.0466524	0.721702
0.263039	0.767998	0.272958
0.252602	0.929868	0.607135

Generally, a good random number generator should have the following characteristics:

- Fast
- Simple
- Desired Statistical Properties
(i.e. no significant correlations)
- Long period

The ANSI C standard is simple, fast (only few operations per call) but exhibits POOR STATISTICAL PROPERTIES AND SMALL PERIOD

European Territorial Cooperation Progamme

Greece - Bulgaria 2007-2013

A simple program for measuring the period for ANSI C rand()

```
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
|
using namespace std;
int main(int argc, char *argv[]) {
    double counter=0, totalcount=0;
    int runs = 10000;
    int X,Y;
    int seed=5097;
    for(int i=0;i<runs;i++)
    {
        counter=0;
        srand(seed+i)
        X=rand ();
        Y=rand ()
```

Average period after 10000 runs: 32718 numbers \approx RAND_MAX (= 32767)

Following the presentation of Wong's book, "Computational Methods in Physics and Engineering", we will implement 3 of the most common tests used:

- Frequency test
- Serial correlation test
- Run up test

It must be clear that the behavior of RNGs may differ with respect to the statistical or empirical test used. The RNG that performs well for the majority of the tests is considered to be the best.

A full set of statistical and other tests concerning the performance of random number generators (RNGs) can be found in Donald Knuth's "The art of computer programming", volume 2, $3^{\text {rd }}$ edition.

FREQUENCY TEST

The procedure is the following:

1. Select the random number generator (RNG).
2. Set the number of data classes $\left(N_{\text {bin }}\right)$. Specify bin range.
3. Iterate to produce $\mathrm{N}_{\text {rand }}$ random numbers. Increase the frequency of the appropriate bin.
4. Calculate the chi-square.
5. Output the frequencies and chi - square.

The chi - square is calculated in the following way:

$$
\begin{aligned}
\chi^{2}=\sum_{i=1}^{N_{b i n}} \frac{\left(M_{j}-n w\right)^{2}}{n w} \quad & M_{j}: \text { number of } R N \text { s in } j \text { bin } \\
& n w: \text { expected } n \text { umber of occurrences per bin } \\
& w=\frac{1}{N_{b i n}} \quad \nu=N_{b i n}-1
\end{aligned}
$$

European Territorial Cooperation Progamme

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

A simple program performing frequency test

```
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
int main(int argc, char *argv[])
int Nbin=50, i, j , numOfRN=50000, seed=5097;
double step=1.0/Nbin,RNG;
int *Bin=new int[Nbin];
for(i=0;i<Nbin;i++) Bin[i]=0;
srand(seed);
for(i=1;i<=numOfRN;i++)
{
        RNG=rand ()/(RAND_MAX+1.0)
        j=int(RNG*Nbin);
        Bin[j]++;
}
//perfroming chi-square
double chi2=0
int degOfFree=Nbin-1;
for(i=0;i<Nbin;i++) chi2+=(Bin[i]- numOfRN*step)*(Bin[i]-numOfRN*step);
chi2=chi2/(numOfRN*step);
FILE *fp;
fp=fopen("frequency test results.dat","w")
fprintf(fp,"chi^2 = slf , nu = si\n",chi2,degOfFree);
for(i=0;i<Nbin;i++) fprintf(fp,"slf si\n",(i*step+(i+1)*step)/2,Bin[i]);
fclose(fp);
return 0;
```

■

SERIAL CORRELATION TEST

The procedure is the following:

1. Select the random number generator (RNG).
2. Iterate to produce $\mathrm{N}_{\text {rand }}$ random numbers (RN). Calculate the correlation coefficient C .
3. Output the correlation coefficient.

The serial correlation coefficient is calculated by the following way:

$$
C=\frac{n\left(\sum_{i=1}^{n} X_{i-1} X_{i}\right)-\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n\left(\sum_{i=1}^{n} X_{i}^{2}\right)-\left(\sum_{i=1}^{n} X_{i}\right)^{2}}
$$

n : number of $R N s$
$X_{i}: i^{\text {th }} R N$

European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

```
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
using namespace std;
int main(int argc, char *argv[])
\square {
    int numOfRN=5000,i,seed=5097;
    double sum2=0, sum1=0, sumCorr =0,
    double current, previous, C, sigma,mu;
    srand (seed);
    previous = rand()/double(RAND_MAX);
    sum1+=previous;
    sum2+=previous*previous;
    for(i=2;i<=numOfRN;i++)
    {
        current=rand ()/double(RAND MAX);
        sumCorr+=previous*current;
        sum1+=previous;
        sum2+=previous*previous;
        previous=current;
    }
    sum1+=previous;
    sum2+=previous*previous;
    //Define correlation coefficient
    C=(numOfRN* sumCorr-sum1* sum1)/(numOfRN* sum2-sum1*sum1)
    printf("slf(n",C);
    return 0;
```


RUN UP TEST

The procedure is the following:

1. Select the random number generator (RNG).
2. Set the number of possible ascending random number (RN) sequences (m).
3. Start producing RNs sequences. While the new RN is greater than the previous one, increase the length of the sequence by one. Else, store the result to an appropriate frequency counter and start a new sequence.
4. Output the frequency counter and the chi-square.

The chi - square is in the following way (for uncorrelated sequences as produced by the above algorithm:
$\chi^{2}=\sum_{l=1}^{L} \frac{\left(K_{l}-m p_{l}\right)^{2}}{m p_{l}} \quad \begin{aligned} & p_{l}: \text { probability of a sequence to have length } l \\ & p_{l}=\frac{1}{l!}-\frac{1}{(l+1)!}\end{aligned}$
K_{l} : counter storing the number of sequences of length l
m : total number of sequences

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

Greece-Bulgaria 2007-2013

INVESTING IN OUR FUTURE

Performing run-up test

\#include <iostream>
\#include <cstdlib>
\#include <cstdio>
\#include "rano.h"
\#include "ranl.h"
using namespace std;
int main(int argc, char *argv[])
10曰 \{
int lmax $=7$, lup, Nttl=100000, seed=5097; double Xold, Xnew
int *Kup=new int[lmax+1];
int counter=0
for (lup=0; lup<lmax+1; lup++) Kup [lup]=0
FILE *fp;
while(counter $<\mathrm{Nt}$ (l)
\{
srand (seed+counter) ;
Xold=rand ()/double (RAND_MAX) ;
lup=1;
Xnew=rand ()/double(RAND_MAX) ;
while (Xnew $>$ Xold)
\{

lup++

Xold=Xnew
Xnew $=$ rand () /double (RAND_MAX) ;

```
counter++;
if(lup<=lmax) Kup[lup]++;
else Kup[lmax]++;
}
char str[100];
sprintf(str,"results_run_test_%d.dat",seed);
fp=fopen(str,"w");
/calculate chi^2
double *pl=new double[lmax+1];
double fact=1;
double chi2=0;
pl[0]=1;
for(lup=1;lup<=lmax;lup++)
{
    fact=fact*lup;
    pl[lup]=(1/fact)*(lup/(lup+1.0))
}
for(lup=1;lup<lmax+1;lup++) fprintf(fp,"si si si\\n",lup,Kup[lup],int(Nttl*pl[lup])),
fclose(fp);
for(lup=1;lup<=lmax;lup++)
{
    if(Kup[lup]!=0) chi2+=((Kup[lup]-Nttl*pl[lup])*(Kup[lup]-Nttl*pl[lup]))/(Nttl*pl[lup])
cout<<chi2<<<"\n";
return 0;
```

\}

The results of the tests for the case of the ANSI C standard are the following:

Frequency test

$$
\left.\begin{array}{c}
\chi^{2}=42.98 \\
\nu=N_{\text {bin }}-1=49
\end{array}\right\} \Rightarrow \chi_{\nu}^{2}=0.877 \sim 1
$$

Serial correlation test

$$
C=0.00797
$$

Run up test

$$
\left.\begin{array}{c}
\chi^{2}=1.67 \\
\nu=7
\end{array}\right\} \Rightarrow \chi_{\nu}^{2}=\frac{1.67}{7}=0.238<1
$$

The ANSI C standard is proven to be a poor random number generator (meaning that it performs worse than other RNGs in the majority of the tests known so far) Guidelines for the implementation of efficient random number generators can be found in "Numerical Recipes in C++", 2nd edition, by Press, Vetterling, Teukolsky, Flannery.

The selection of an appropriate random number generator depends on the problem under study.
E.g., if anyone wants to have a site on a 2D lattice, he/she must be very careful to choose an RNG that has the minimal correlations between successive calls.

For the rest of the presentation (and just for illustrative purposes) we will use the RNG specified by the compiler. You can use any other RNG at the part of the code where rand() is being used.

It is strictly recommended TO TEST THE RNG BEFORE ANY USAGE (or to consult any relative documentation) to decide if it is suitable for the problem you indent to simulate.

In the following slides, we will present a simple program which calculates the mean value of a sequence of N RNs, uniformly distributed and will try to sketch the way of producing RNs with obeying to different distributions.

European Territorial Cooperation Progamme

Exercise

Create a program which calculates the average of N random numbers taken from a uniform random number distribution. The program must run for $\mathrm{N}=10,100,1000,10000,100000,1000000$ random numbers. Plot the mean value as a function of N (it's preferable that the axis of N is logarithmic). Describe your conclusions from the results.

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE

\square

Indicative program

```
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
int main(int argc, char *argv[])
\square{
    int seed=5097,i,j,order=6,N=10;
    double sum;
    FILE *fp=fopen("results.dat","w");
    for(i=1;i<=order;i++)
    {
        sum=0.0;
        srand(seed+i);
        for(j=1;j<=N;j++) sum+=rand()/double(RAND_MAX);
        sum/=N;
        fprintf(fp," %i %lf\n",N,sum);
        N*=10;
    }
    fclose(fp);
        return 0;
```


Exercise

Create an exponential RNG based on the uniform RNG.

It is easy to show that if x follows a uniform distribution, then we can produce a series of numbers following an exponential distribution.

$$
\begin{gathered}
\operatorname{Pr}(Y \leq y)=\operatorname{Pr} X \leq x \Rightarrow F_{Y}(y)=F_{X}(x) \\
\Rightarrow 1-e^{-\lambda y}=x \Rightarrow y(x)=-\frac{1}{\lambda} \ln (1-x), x \in[0,1]
\end{gathered}
$$

Because, if x is a uniform random number, it follows that $1-x$ is of the same distribution, we can write instead

$$
y(x)=-\frac{1}{\lambda} \ln (x)
$$

For more information refer to the book: "Numerical recipes in C++"

European Territorial Cooperation Progamme

Greece-Bulgaria 2007-2013

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE

```
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
using namespace std;
int main(int argc, char *argv[])
```

\square \{
double x, y;
int $\mathrm{N}=$ atoi (argv[1]);
int seed=atoi(argv[2]);
double lambda=atof(argv[3]);

char str[100];
sprintf(str,"unif2expo_H8d_185.2lf.dat",N,lambda);
FILE *fp=fopen(str,"w");
srand (seed);

European Territorial Cooperation Progamme

Random Walk in 2-D

One of the most common problems in the Monte Carlo simulations is the RANDOM WALK.

The basic part is the movement: in a 2-D lattice, a particle moves to a neighboring site according to a simple if - else process. We restrict the random values produced by the RNG in the range $[0,1]$. We divide this range in four segments of equal width (generally,, in 2d segments, with d being the dimension). The RNs are uniformly distributed, so there is no bias to the resulting values. Then, depending on the segment into which the RN falls, we choose in which direction to move. A possible rule of movement is given below.

Greece-Bulgaria 2007-2013

Exercise

Create a program which simulates the random walk of a particle on a 2D square lattice. The particle performs $\mathrm{N}=1000$ steps. Calculate for 10000 random walkers:

- the average square displacement, $<\mathrm{R}^{2}>$ and
- the average number of distinct sites the random walker has visited
keeping a record for every 100 steps.
Plot the results as a function of time steps.
A random walk may have the following form

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE

The program

0	\#include <cstdlib>	32	for (i=0; i<numOfRuns;i++)	
1	\#include <iostream>	33	\{	
2		34		
	using namespace std;	35	srand (seed+i);	
4		36		
5	int main(int argc, char *argv[])	37	for ($\mathrm{x}=0 ; \mathrm{x}<\operatorname{Ldim} ; \mathrm{x}++$) for ($\mathrm{y}=0 ; \mathrm{y}<\operatorname{Ldim} ; \mathrm{y}++$)	lattice[x][y]=0;
6		38		
7		39	$\mathrm{x}=\mathrm{Ldim} / 2 ; \mathrm{y}=\mathrm{Ldim} / 2$;	
8	int step=atoi (argv[1]);	40		
9	int numOfSteps=atoi (argv[2]);	41	counterS=0;	
10	int numOfRuns=atoi (argv[3]) ;	42		
11	int seed=atoi (argv[4]);	43	lattice[x][y]=1; counterS++;	
12	int Ldim=atoi (argv[5]);	44		
13	int numOfVal=numOfSteps/step;\|	45	for (j=1; j<=numOfSteps; ${ }^{\text {+ }}$ (+)	
14		46	\{	
15	double r ;	47		
16	int i,j, x, y, counterS;	48	$\mathrm{r}=\mathrm{rand}$ () /double (RAND_MAX) ;	
17		49		
18	double *R2=new double[numOfVal];	50	if ($\mathrm{r}<0.25$) $\mathrm{x}++$;	
19	int *S=new int[numOfVal];	51	else if ($r>=0.25$ \&\& $r<0.5$) $\mathrm{x}-\mathrm{-}$;	
20		52	else if ($\mathrm{r}>=0.5$ \&\& $\mathrm{r}<0.75$) $\mathrm{y}++$;	
21	for (i=0; i<numOfVal; i++)	53	else y^{--};	
22	\{	54		
23	R2[i]=0;	55	if ($\mathrm{x}<0$) $\mathrm{x}=0$;	
24	S[i] $=0$;	56	else if ($\mathrm{x}==$ Ldim) $\mathrm{x}=$ Ldim-1;	
25		57	else if ($\mathrm{x}<0$) $\mathrm{y}=0$;	
26	\}	58	else if ($\mathrm{y}==$ Ldim) $\mathrm{y}=$ Ldim-1;	
27				
28	int **lattice=new int*[Ldim];			
29				
30	for(i=0;i<Ldim;i++) lattice[i]=new int[Ldim];			
31				

European Territorial Cooperation Progamme

Greece - Bulgaria 2007-2013

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

\square

The program (cont'd)

```
if(lattice[x][y]==0)
{
            lattice[x][y]=1;
            counterS++
        }
    if((j%step) == 0)
    {
            R2[(j/step) -1]+=(x-Ldim/2)*(x-Ldim/2) +(y-Ldim/2)*(y-Ldim/2);
            S[(j/step)-1]+=counterS;
        }
    }
}
for(i=0;i<numOfVal;i++)
{
    R2[i]=R2[i]/numOfRuns;
    S[i]=S[i]/numOfRuns;
\begin{tabular}{|c|c|}
\hline 88 & \\
\hline 89 & FILE *fp = fopen("RW_R2_results.dat", "W"); \\
\hline 90 & \\
\hline 91 & for (i=0;i<numOfVal;i++) fprintf(fp, "\%i \% \(1 \mathrm{f} \backslash \mathrm{n}\) ", (i+1)*step, R2[i]); \\
\hline 92 & \\
\hline 93 & fclose (fp) ; \\
\hline 94 & \\
\hline 95 & \(\mathrm{fp}=\mathrm{fopen}\left(\right.\) "RW_S_results.dat", \({ }_{\text {W" }}\) ) ; \\
\hline 96 & \\
\hline 97 & for(i=0;i<numOfVal;i++) fprintf(fp, "\%i \%i\n", (i+1)*step, S[i]); \\
\hline 98 & \\
\hline 99 & fclose(fp) ; \\
\hline 100 & \\
\hline 101 & system("PAUSE"); \\
\hline 102 & return EXIT_SUCCESS; \\
\hline 103 & \\
\hline
\end{tabular}
```


European Territorial Cooperation Progamme

\square

Results

$$
\left\langle R^{2}\right\rangle=4.04+0.99 t \sim t
$$

European Territorial Cooperation Progamme

$$
\langle S\rangle_{2 D} \sim \pi t / \log (t)
$$

European Territorial Cooperation Progamme

 Greece - Bulgaria 2007-2013

Distribution of <R> in 1-D

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria


```
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
using namespace std;
int main(int argc, char *argv[]) {
    int runs=atoi(argv[1])
    int steps=atoi(argv[2]);
    int Ldim=5*int(sqrt(1.0*steps));|
    int x:
    double r;
    int i,j;
    int *R_left=new int[Ldim];
    int *R_right=new int[Ldim];
    for(i=0;i<LIdim;i++)
    {
    R right[i]=0;
    R_left[i]=0;
}
for(i=0;i<runs;i++)
{
    x=0;
    srand(5097+i);
```


European Territorial Cooperation Progamme

Trapping

Create a program which constructs a a two (2) dimensional lattice of size 400×400. In this lattice, put at random positions a number of trap molecules, which will have concentration c. Put 1 particle in a random position on the lattice and let it perform a random walk. In this walk you will not place a time restriction, namely you will not declare a specific number of steps. The walk will stop when the particle falls on a trap. The time needed for this to happen is the trapping time. Perform 10000 runs, save the trapping times and make the distribution of these times for $\mathrm{c}=0.02$ and 0.2 . From this distribution and for $\mathrm{c}=0.2$ calculate the survival probability $\Phi(\mathrm{c}, \mathrm{n})$ and compare it with the Rosenstock approximation. Describe your conclusions. Beware of boundary conditions. When the particle reaches the borders of the lattice it shouldn't be allowed to escape from it but to remain in the lattice, either by returning on it former position or by being placed in the opposite site of the lattice.

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

Greece-Bulgaria 2007-2013


```
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
```

int main(int argc, char *argv[]) \{
int Ldim=atoi(argv[1]);
double traps=atof(argv[2]);
int Nwalk=atoi (argv[3]);
char str [100];
sprintf(str,"results_trapping_84.2lf.dat",traps);
double r;
int i,j;
int x, y
int **lattice=new int*[Ldim];
for ($i=0 ; i<\operatorname{Ldim} ; i++$)
\{
lattice[i]=new int[Ldim];
for ($\left.j=0 ; j<\operatorname{Ldim} ; j^{++}\right)$lattice[i][j]=0;
\}
//putting traps
traps $=$ floor $\left(\right.$ traps* $\operatorname{Ldim}{ }^{*}$ Ldim);

```
while(traps)
{
    i=int ((rand ()/(RAND_MAX+1.0)) *Ldim);
    j=int((rand ()/(RAND_MAX+1.0)) *Ldim);
    while(lattice[i][j]==1)
    {
            i=int((rand ()/(RAND_MAX+1.0)) *Ldim);
            j=int((rand ()/(RAND_MAX+1.0)) *Ldim);
        }
        lattice[i][j]=1;
    traps--;
}
//performing random walk
int *countTraps=new int[Nwalk];
int max}=0\mathrm{ ;
for(i=0;i<Nwalk;i++)
{
    srand(5097+i);
    countTraps[i]=0;
    x=int((rand ()/(RAND_MAX+1.0)) *Ldim);
    y}=\boldsymbol{int}((r\mathrm{ and ()/(RAND_MAX+1.0))*Ldim);
```

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

83	
84	while(lattice $[\mathrm{x}][\mathrm{y}]==1$)
85 白	\{
86	
87	$\mathrm{x}=\mathbf{i n t}((\mathrm{rand}) /($ RAND_MAX+1.0) $)$ *Ldim) ;
88	
89	$\mathrm{y}=$ int ($(\mathrm{rand}$ ()/(RAND_MAX+1.0)) *Ldim) ;
90	
91 -	\}
92	
93	//performing $R W$
94	
95	while(lattice [x] [y]==0)
96 日	\{
97	
98	$r=r a n d$ ()/double (RAND_MAX) ;
99	
100	if($\mathrm{r}<0.25$) x^{++};
101	else if ($\mathrm{r}>=0.25$ \&\& $\mathrm{r}<0.5$) x^{--};
102	
103	else y^{--};
104	
105	if $(x<0) ~ x=L d i m-1 ; ~$
106	else if ($\mathrm{x}==$ Ldim) $\mathrm{x}=0$;
107	else if $(\mathrm{y}<0) \mathrm{y}=$ Ldim-1;
108	else if ($\mathrm{y}==$ Ldim) $\mathrm{y}=0$;
109	
110	countrraps[i]++;
111	
112	
113 -	\}
114	
115	if(max<countTraps[i]) max countrraps[i];
116	
117 -	\}
118	
119	int *freq=new int [max+1];
120	
121	for (i=0; $i^{\text {< max }}+1 ; i++$ freq [i]=0;
122	
123	for (i=0;i<Nwalk;i++) freq[countTraps[i]]++;

```
FILE *fp=fopen(str,"w");
for(i=0;i<max+1;i++) if(freq[i]) fprintf(fp," %i %i\n",i,freq[i])
fclose(fp);
ceturn 0
```


European Territorial Cooperation Progamme

European Territorial Cooperation Progamme

Survival probability

It can be proven that the probability of a particle to survive from trapping is given for 2 D by the relation:

$$
\Phi(c, n) \simeq(1-c)^{<S_{n}>}
$$

c : concentration of traps per site
$<S_{n}>_{2 D} \sim \pi n / \log (8 n)$

Network growth

The investigation of real world systems led Barabasi and Albert ${ }^{[1]}$ to propose a mechanism for the evolution of networks, based on 2 main features:

1. Growth: Starting with a small number of nodes $\left(m_{0}\right)$, at every time step, we add a new node with $m\left(\leq m_{0}\right)$ edges that link the new node to m different nodes already present in the system.
2. Preferential attachment: When choosing the nodes to which the new node connects, we assume that the probability Π that a new node will be connected to node i depends on the degree k_{i} of node i, such that:

$$
\Pi\left(k_{i}\right)=k_{i} / \sum_{j<i} k_{j}
$$

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

Greece-Bulgaria 2007-2013

\square

INVESTING IN OUR FUTURE

```
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include <cstdio>
#include <cstdio>
#include <vector>
#include <vector>
using namespace std;
using namespace std;
int main(int argc, char *argv[])
int main(int argc, char *argv[])
\square {
10
10
int initNodes=atoi(argv[1]);
    int totalNodes=atoi(argv[2]);
    double p=atof(argv[3]);
    int m=atoi(argv[4]);|
    double r;
    vector<int> *network=new vector<int> [totalNodes+1];
    int i,j;
    for(i=0;i<initNodes-1;i++)
    {
        for(j=i+1;j<initNodes;j++)
        {
        if(rand ()/double(RAND_MAX) < p)
        {
            network[i].push_back(j);
            network[j].push_back(i)
        }
    }
    }
```

 int nodesum \(=0\);
    ```
int node;
char str[100];
FILE *fp;
int k,l;
vector<int> currNodeSize;
for(i=0;i<initNodes;i++)
{
    k=network[i].size();
    currNodeSize.push_back(k);
}
for(i=initNodes;i<totalNodes+1;i++)
{
    srand(5097+i);
    for(j=0;j<m;j++)
    {
        r=rand()/(RAND_MAX+1.0);
        node=int(i*r);
        k = currNodeSize[node];
        l = network[node].size();
        r=rand ()/(RAND_MAX+0.0);
            while( r > k/(nodeSum+0.0) || network[node] [l-1] == i)
            {
                r=rand ()/(RAND_MAX+1.0);
                    node=int(i*r);

This Project is ca-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

\section*{Greece-Bulgaria 2007-2013}


INVESTING IN OUR FUTURE
\(1=\) network[node].size();
\(r=r\) and ()\(/(\) RAND_MAX +0.0\()\);
\}
network[node] •push_back(i);
network[i].push_back(node);
,

\{
\(\mathrm{k}=\) network[j].size();
currNodesize[j]=k;
\}
\(\mathrm{k}=\) network[i].size()
currNodesize.push_back(k);
nodesum \({ }^{+=2}\) * \(^{\text {m }}\);
cout \(\ll\) i \(\lll 1\) n" ;
```

}

```
sprintf(str,"network_nodessd.dat",i);
\(\mathrm{fp}=\) fopen(str,"w");
```

for(i=0;i<=totalNodes;i++)

```
\{
    fprintf(fp," sd sd ", i, network[i].size());
    if(network[i].size())
    \{
\(\square\)

\section*{Results}


European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE


\section*{Diffusion - Limited Aggregation (DLA)}

DLA is a simple model which was initially used to describe the aggregation process of solid particles by Sander and Witten \({ }^{[1]}\).

The procedure is the following:
1. Initially, we position a particle at the origin of the lattice.
2. A second particle is introduced at some random site, a large distance from the origin (generally from the aggregate), which performs random walk.
3. If the particle becomes a nearest neighbor of the aggregate, it becomes a part of it and the walk stops. Else, if it goes at the borders of the lattice (or far from the aggregate), it disappears.
4. A new particle is introduced, repeating steps 2 and 3 .
[1] T.A.Witten, L.M.Sander, "Diffusion - Limited Aggregation, a Kinetic Critical Phenomenon", PRL vol 47, no 19, 1981

European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE



Making a simple implementation of the algorithm, for a \(201 \times 201\) square lattice, we get the following result:



European Territorial Cooperation Progamme Greece - Bulgaria 2007-2013

This Project is co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

INVESTING IN OUR FUTURE
```

