
Scientific
Computing
Paschalis Korosoglou

Outline

• Programming for scientific purposes

• Linux (Makefiles, Compilers, Libraries & Tools)

• Parallel programming

• OpenMP

• MPI

• Grid, HPC, Cloud etc

2

Science goes “in-silico”

• Exact solutions are not always possible using
current theoretical tools and methods

• i.e. many problems we have to solve are non-
linear

• Numerical integration and simulation technics
are providing answers to difficult problems

• The more complex the problem the more demanding
the solution will be

• Better hardware, improved software etc

3

Methods

• Monte-carlo (Map reduce in general)

• Finite differences, finite volumes (structured
grids)

• Finite elements (unstructured grids)

• Spectral analysis

• Dense Linear Algebra

• Sparse Linear Algebra

• N-body & particles simulations
4

Fields of application

• Astrophysics

• Biology

• Chemistry

• Climate

• Economy

• Engineering

• High energy physics

• Nanotechnology

• Seismology

• Sociology and
many many more…

5

What any scientist will ask
oneself

• “How can I solve an even bigger problem than
the one I finally solved last night after
struggling for the last three years?”

• “I am happy with the solution but I want to
solve it a couple trillion more times with
varying initial conditions”

• “Ok, those are valid points. I want to go
both ways!”

6

The computer engineer will
respond..

• “Well you can try improving your code. What
does profiling tell you? Do you overlap
computation with communication? And what
about I/O? Is that going to be a
bottleneck?” – Software refactoring

• “Ok, look. We have a new machine on the way
and we expect it to be available in a couple
of months. If you can wait until then we can
try out your code and hopefully it will work
the way you want it to” – Hardware specs

• “Have you tried linking it with mkl?” – Code
re-use

7

Start off serially (take one step
at a time)

• But don’t get too excited.

You are not living in the
90s any more…

“From 2007 to 2011,
maximum CPU clock speed
(with Turbo Mode enabled)
rose from 2.93GHz to
3.9GHz, an increase of 33%.
From 1994 to 1998, CPU
clock speeds rose by
300%.”

8

Parallel programming

• Parallel programming may overcome the hardware
issues but before doing anything parallel make
sure that:

• Your serial code is already optimal!
Questions to ask yourself:

• Are you using other people’s computational
and I/O libraries?

• Have you tested with other compilers and,
if yes, have you tried various
optimization flags?

• What does profiling tell you?
9

Why Linux?

• It’s stable, light and well documented

• It does the job

• It supports as many and even more tools for
computing

More than 80% of the systems on the Top500 list
run Linux

1 0

What you will need to login

• If you are running Windows download and install

• Putty

• Winscp

http://wiki.grid.auth.gr/wiki/bin/view/Groups/ALL/UserInte
rfacesAtAuth

11

Setting the ground

• Anything in Courier usually denotes something

you type in a terminal window

• Lines starting with ‘#’ or ‘$’ signs usually

denote commands you will have to issue

• The‘<‘,’>’ marks are used to denote segments

you need to change before you type in.

• Stuff in italic is usually also stuff you will
need to replace

1 2

Hands-on!

$ ssh demoXY@ui.afroditi.hellasgrid.gr

$ cd /mnt/cpg/demo/demoXY

$ svn co http://svn.hellasgrid.gr/svn/…

1 3

http://goo.gl/PHpyp

Useful commands

1 4

Command Description

ls -la List contents of current working
directory (the –ls part is optional for

long and all listing)

mkdir directory Create a new directory (folder)

cd directory Change the current working directory.
Note that cd .. Takes you one folder up.

pwd Print the current working directory
(where – on which path – am I)

hostname Print the name of the host (where am I
logged onto)

whoami Print my username (who am I)

who Print a list of everyone logged in right
now.

Information discovery

1 5

Command Description

uname -a Provides information on architecture and
kernel version

cat /etc/redhat-release OS name and version (redhat based systems
only)

pbsnodes Provides a list of available resources,
their properties and their current state

qstat Displays the submitted list of your jobs

PBS scripts

1 6

#!/bin/bash
#PBS -N hostname
#PBS -q complex
#PBS -l walltime=10:00:00
#PBS -j oe

this is a comment
/bin/hostname

The Makefile

• Define a set of rules to follow

• Used mainly for source code compilation

• Helpful during development phase when small
changes are made to specific files

1 7

math.o: math.c math.h
 gcc –c math.c -o math.o

The Makefile

• Define a set of rules to follow

• Used mainly for source code compilation

• Helpful during development phase when small
changes are made to specific files

1 8

math.o: math.c math.h
 gcc –c math.c -o math.o

target dependancies rule

The Makefile

• Define a set of rules to follow

• Used mainly for source code compilation

• Helpful during development phase when small
changes are made to specific files

1 9

math.o: math.c math.h
 gcc –c math.c -o math.o

target dependancies rule

math.o: math.c math.h
 gcc -c $< -o $a

or

2 0

Overview of Parallel computing

• In parallel computing a program spawns several concurrent
processes

• decrease the runtime needed to solve a problem or

• increase the problem size to be solved

• The original problem is decomposed into tasks that
ideally run independently

• Source code development within some parallel programming
environment

• hardware platform

• nature of the problem

• performance goals

Hardware considerations

2 1

2 2

Hardware considerations

• Distributed memory systems

• Each process (or processor) has unique address
space

• Direct access to another processors memory not
allowed

• Process synchronization occurs implicitly

• Shared memory systems

• Processors share the same address space

• knowledge of where data is stored is of no
concern to the user

• Process synchronization is explicit

• Not scalable

2 3

Parallel programming models

• Distributed memory systems

• Programmer uses “Message Passing” in order to
sync processes and share data among them

• Message passing libraries

• MPI

• PVM

• Shared memory systems

• Thread based programming approach

• Compiler directives (i.e. OpenMP)

• Message passing may also be used

Nature of the problem

• Parallel computing

• Embarrassingly parallel (parametric studies)

• Multiple processes concurrently (Domain
and/or functional decomposition)

2 4

Nature of the problem
(examples)

• Functional partitioning

• Domain decomposition

2 5

Amdahl’s Law

2 6

Amdahl’s

law
predicts
the
theoretical
maximum
speedup
when using
multiple
processors

Overview of OpenMP

•Shared vs Distributed memory models

•Why OpenMP

•How OpenMP works

•Basic examples

•How to execute the executable

27

Hardware considerations

28

Introduction to OpenMP

•API extension to C/C++ and Fortran
languages

•Most compilers support OpenMP

• GNU, IBM, Intel, PGI, PathScale, Open64 …

•Extensively used for writing programs for
shared memory architectures over the past
decade

• Thread (process) communication is implicit
and uses variables pointing to shared memory
locations; this is in contrast with MPI which
uses explicit messages passed among each
process

29

30

Threaded parallel programming
(openMP)

• openMP is based on a fork - join model

• Master - worker threads

Use of directives and pragmas within source code

Approach towards parallelism

• From serial to parallel with OpenMP

31

32

Memory issues

• Threads have access to the same address
space

• Communication is implicit

• Programmer needs to define

• local data

• shared data

33

Hello world example

Environment variable
OMP_NUM_THREADS

Common API calls

34

Call Description

int omp_get_num_threads() Returns the number of threads
in the concurrent team

int omp_get_thread_num() Returns the id of the thread
inside the team

int omp_get_num_procs() Returns the number of
processors in the machine

int omp_get_max_threads() Returns maximum number of
threads that will be used in the
next parallel region

double omp_get_wtime() Returns the number of seconds
since a time in the past

bool omp_in_parallel() 1 if in parallel region, 0
otherwise

Common API calls example

35

Data scoping

• For each parallel region the data environment is
constructed through a number of clauses

• shared (variable is common among threads)

• private (variable inside the construct is a new
variable)

• firstprivate (variable is new but initialized to its
original value)

• default (used to set overall defaults for construct)

• lastprivate (variable’s last value is copied outside
construct)

• reduction (variable’s value is reduced at the end)

36

A few examples

37

x = 3
x = 2
x = 3

Will print anything
and then x=1

x = 2
x = 2
x = 1

x = 2
x = 3
x = 3

or

Synchronization

•OpenMP provides several synchronization mechanisms

• barrier (synchronizes all threads inside the team)

•master (only the master thread will execute the block)

• critical (only one thread at a time will execute)

• atomic (same as critical but for one memory location)

38

Synchronization examples

39

foo(3), foo(3)

foo(2), foo(3)

foo(2), foo(2) foo(1), foo(2) or

Data parallelism

•Worksharing constructs

• Threads cooperate in doing some work

• Thread identifiers are not used explicitly

•Most common use case is loop worksharing

•Worksharing constructs may not be nested

•DO/for directives are used in order to
determine a parallel loop region

40

The for loop directive

•Where clauses may be

• private, firstprivate, lastprivate

• Reduction

• Schedule

• Nowait

• Loop iterations must be independent

• Can be merged with parallel constructs

• Default data sharing attribute is shared

41

#pragma omp for [clauses]
for (iexpr ; test ; incr)

42

Implicit
synchronization point
at the end of for loop

i is privatized
automatically

j must be declared
private explicitly

43

The schedule clause

• Schedule clause may be used to determine the
distribution of computational work among threads

• static, chunk; The loop is equally divided among
pieces of size chunk which are evenly distributed
among threads in a round robin fashion

• dynamic, chunk; The loop is equally divided among
pieces of size chunk which are distributed for
execution dynamically to threads. If no chunk is
specified chunk=1

• guided; similar to dynamic with the variation that
chunk size is reduced as threads grab iterations

• Configurable globally via OMP_SCHEDULE

• i.e. setenv OMP_SCHEDULE "dynamic,4"

44

Adding two vectors

Reduction clause

•Useful in the case one variable’s value is

accumulated within a loop

•Using the reduction clause

•A private copy per thread is created and
initialized

•At the end of the region the compiler safely
updates the shared variable

•Operators may be +, *, -, /, &, ^, |, &&, ||

45

46

Reduction clause example

4 7

Message Passing Model

• A process may be defined as a program counter
and an address space

• Each process may have multiple threads sharing
the same address space

• Message Passing is used for communication among
processes

• synchronization

• data movement between address spaces

4 8

Message Passing Interface

• MPI is a message passing library specification

• not a language or compiler specification

• no specific implementation

• Source code portability

• SMPs

• clusters

• heterogenous networks

4 9

Types of communication

• Initialization, Finalization and
Synchronization calls

• Point-to-Point calls

• data movement

• Collective calls

• data movement

• reduction operations

• synchronization

5 0

MPI Features

• Point-to-point communication

• Collective communication

• One-sided communication

• Communicators

• User defined datatypes

• Virtual topologies

• MPI-I/O

5 1

Basic MPI

• MPI_Init

• MPI_Comm_size (get number of processes)

• MPI_Comm_rank (gets a rank value assigned to
each process)

• MPI_Send (cooperative point-to-point call used
to send data to receiver)

• MPI_Recv (cooperative point-to-point call used
to receive data from sender)

• MPI_Finalize

5 2

Hello World!

5 3

Hello World!

if (ierror .ne. MPI_SUCCESS)
then
 ... do error handling as
desired ...
end if

5 4

Starting and exiting the MPI
environment

• MPI_Init

• C style: int MPI_Init(int *argc, char
***argv);

• accepts argc and argv variables (main arguments)

• F style: MPI_INIT (IERROR)

• Almost all Fortran MPI library calls have an integer
return code

• Must be the first MPI function called in a program

• MPI_Finalize

• C style: int MPI_Finalize();

• F style: MPI_FINALIZE (IERROR)

5 5

Communicators

• All mpi specific communications take place with
respect to a communicator

• Communicator: A collection of processes and a
context

• MPI_COMM_WORLD is the predefined

communicator of all processes

• Processes within a communicator are assigned a
unique rank value

5 6

A few basic considerations

• Q: How many processes are there? A: (N)

• (C) MPI_Comm_size(MPI_COMM_WORLD, &size);

• (F) MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

• Q: Which one is which? A: [0,(N-1)]

• (C) MPI_Comm_rank(MPI_COMM_WORLD, &rank);

• (F) MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

• The rank number is between 0 and (size - 1) unique

per process

5 7

Sending and receiving messages

• Questions

• Where is the data?

• What type of data?

• How much data is sent?

• To whom is the data sent?

• How does the receiver know which data to
collect?

5 8

What is contained within a
message?

• message data

• buffer

• count

• datatype

• message envelope

• source/destination rank

• message tag (tags are used to discriminate
among messages)

• communicator

5 9

MPI Standard (Blocking)
Send/Receive

• Syntax

• MPI_Send(void *buffer, int count,

MPI_Datatype type, int dest, int tag,

MPI_Comm comm);

• MPI_Recv(void *buffer, int count,

MPI_Datatype type, int src, int tag,

MPI_Comm comm, MPI_Status status);

• Processes are identified using dest/src values and
the communicator within the message passing takes
place

• Tags are used to deal with multiple messages in an
orderly manner

• MPI_ANY_TAG and MPI_ANY_SOURCE may be used as
wildcards on the receiving process

MPI Datatypes

6 0

6 1

Getting information about a
message

• Information of source and tag is stored in
MPI_Status variable

• status.MPI_SOURCE

• status.MPI_TAG

• MPI_Get_count can be used to determine how much
data of a particular type has been received

• MPI_Get_count(&status, MPI_Datatype,
&count);

6 2

Yet another listing (deadlock?)
Program Output:

from process 1 using tag 158 buf1[N-1] = 8.1

from process 0 using tag 157 buf0[N-1] = 0.9
 double buf0[N], buf1[N];

 MPI_Status status;

 int tag_of_message, src_of_message;

 if(rank == 0)

 {

 for(int i=0; i<N; i++) buf0[i] = 0.1 * (double) i;

 MPI_Send(buf0, N, MPI_DOUBLE, 1, 157, MPI_COMM_WORLD);

 MPI_Recv(buf1, N, MPI_DOUBLE, 1, 158, MPI_COMM_WORLD, &status);

 tag_of_message = status.MPI_TAG;

 src_of_message = status.MPI_SOURCE;

 cout << "from process " << src_of_message << " using tag " <<

 tag_of_message << " buf1[N-1] = " << buf1[N-1] << endl;

 }

 else if (rank == 1)

 {

 for(int i=0; i<N; i++) buf1[i] = 0.9 * (double) i;

 MPI_Send(buf1, N, MPI_DOUBLE, 0, 158, MPI_COMM_WORLD);

 MPI_Recv(buf0, N, MPI_DOUBLE, 0, 157, MPI_COMM_WORLD, &status);

 tag_of_message = status.MPI_TAG;

 src_of_message = status.MPI_SOURCE;

 cout << "from process " << src_of_message << " using tag " <<

 tag_of_message << " buf0[N-1] = " << buf0[N-1] << endl;

 }

6 3

Blocking communication

• MPI_Send does not complete until buffer is
empty (available for reuse)

• MPI_Recv does not complete until buffer is full
(available for use)

• MPI uses internal buffers (the envelope) to
pack messages, thus short messages do not
produce deadlocks

• To avoid deadlocks one either reverses the
Send/Receive calls on one end or uses the Non-
Blocking calls (MPI_Isend or MPI_Irecv
respectively followed by MPI_Wait)

Communication Types

• Blocking: If a function performs a blocking
operation, then it will not return to the
caller until the operation is complete.

• Non-Blocking: If a function performs a non-
blocking operation, it will return to the
caller as soon as the requested function has
been initialized.

• Using non-blocking communication allows for
higher program efficiency if calculations can
be performed while communication activity is
going on. This is referred to as overlapping
computation with communication

6 4

6 5

Communication (i.e. Send) Modes

• Standard mode (MPI_Send, MPI_ISend)

• Send will complete when buffer is available
for use

• Synchronous mode (MPI_Ssend, MPI_Issend)

• The send will complete only until a matching
receive has been posted and transfer has
started

• Buffered mode (MPI_Bsend, MPI_Ibsend)

• Send is complete as soon as the user buffer
is copied to the system buffer

• Ready mode (MPI_Rsend, MPI_Irsend)

• send starts only if a matching receive has
been posted

6 6

Collective communications

• All processes within the specified communicator
participate

• All collective operations are blocking

• All processes must call the collective
operation

• No message tags are used

• Three classes of collective communications

• Data movement

• Collective computation

• Synchronization

6 7

Examples of collective
operations

6 8

Synchronization

• MPI_Barrier (comm)

• Execution blocks until all processes in comm
call it

• Mostly used in highly asynchronous programs

Timing using MPI

• MPI_Wtime returns number of seconds since an
arbitrary point in the past

7 0

 double mpi_t0,mpi_t1;
 if(rank == 0)
 {
 mpi_t0 = MPI_Wtime();
 }
 sleep(1);
 MPI_Barrier(MPI_COMM_WORLD);
 if(rank == 0)
 {
 mpi_t1 = MPI_Wtime();
 printf("# MPI_time = %f\n", mpi_t1-mpi_t0);
 }

Compile and submit a “mm” job

7 3

Master process decomposes matrix a and provides

slave processes with input. Each slave process

caries ns=nm/sz rows of a and the complete b

matrix to carry out computations. Results are

sent back to master who prints out timing.

Mixing MPI and OpenMP

74

•Hybrid architectures

•Clusters on SMPs

•HPC Platforms

• IBM BlueGene (i.e.
Jugene)

• IBM P6 (i.e. Huygens)

•Good starting point

•Mapping of MPI on
nodes (interconnection
layer)

•

7 5

